Skip to main content

Advertisement

Log in

A Review of Progress in Constraining Global Black Carbon Climate Effects

  • Review Article
  • Published:
Earth Systems and Environment Aims and scope Submit manuscript

Abstract

The global aerosol direct and indirect radiative effect remains the largest source of uncertainty in estimations of the global energy budget in climate models. Black carbon (BC) is the largest contributor to aerosol atmospheric radiative absorption, and its contribution to radiative forcing must be better constrained to reduce uncertainties in the overall aerosol radiative effect. This paper reviews the advancement in the understanding of BC radiative forcing, highlighting improved constraints for major sources of model uncertainty as described by Bond et al. (J Geophys Res Atmos 118:5380–5552, 2013), a fundamental review of the climate effects of BC which served as a primary source of the BC uncertainty analysis in the Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Bond identified five primary sources of forcing uncertainty: altitude and removal rates of BC, BC emissions rates, individualized attribution of radiative forcing to absorbing aerosols species, BC effects on clouds, and accuracy of climate models in representing components of the Earth system, such as clouds and sea ice absent of BC. Improved constraints in each of these areas of forcing uncertainty—particularly BC impacts on clouds and atmospheric water vapor—have achieved a narrower uncertainty range in the IPCC Sixth Assessment Report (AR6). This paper excludes a review of the accuracy of the representation of climate models, rather focusing on the interaction of anthropogenic emissions of BC in the climate system. Future research should both expand upon the progress detailed in this paper and address the impacts of BC in the cryosphere, with particular focus on the contribution of BC to observed rapid warming of the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen RJ, Landuyt W (2014) The vertical distribution of black carbon in CMIP5 models: comparison to observations and the importance of convective transport. J Geophys Res 119(8):4808–4835. https://doi.org/10.1002/2014JD021595

    Article  Google Scholar 

  • Baker LH, Collins WJ, Olivié DJL, Cherian R, Hodnebrog MG, Quaas J (2015) Climate responses to anthropogenic emissions of short-lived climate pollutants. Atmos Chem Phys 15(14):8201–8216. https://doi.org/10.5194/acp-15-8201-2015

    Article  Google Scholar 

  • Barrett TE, Ponette-González AG, Rindy JE, Weathers KC (2019) Wet deposition of black carbon: a synthesis. In: Atmospheric environment, vol 213. Elsevier Ltd, Amsterdam, pp 558–567

  • Barth MC, Cantrell CA, Brune WH, Rutledge SA, Crawford JH, Huntrieser H, Carey LD, MacGorman D, Weisman M, Pickering KE, Bruning E, Anderson B, Apel E, Biggerstaff M, Campos T, Campuzano-Jost P, Cohen R, Crounse J, Day DA, Ziegler C (2015) The deep convective clouds and chemistry (DC3) field campaign. Bull Am Meteorol Soc 96(8):1281–1310. https://doi.org/10.1175/BAMS-D-13-00290.1

    Article  Google Scholar 

  • Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res Atmos. https://doi.org/10.1029/2003JD003697

    Article  Google Scholar 

  • Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000. Glob Biogeochem Cycles. https://doi.org/10.1029/2006GB002840

    Article  Google Scholar 

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T, DeAngelo BJ, Flanner MG, Ghan S, Kärcher B, Koch D, Kinne S, Kondo Y, Quinn PK, Sarofim MC, Schultz MG, Schulz M, Venkataraman C, Zhang H, Zhang S, Bellouin N, Guttikunda SK, Hopke PK, Jacobson MZ, Kaiser JW, Klimont Z, Lohmann U, Schwarz JP, Shindell D, Storelvmo T, Warren SG, Zender CS (2013) Bounding the role of black carbon in the climate system: A scientific assessment. J Geophys Res Atmos 118:5380–5552. https://doi.org/10.1002/jgrd.50171

    Article  Google Scholar 

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Carslaw KS, Lee LA, Reddington CL, Pringle KJ, Rap A, Forster PM, Mann GW, Spracklen DV, Woodhouse MT, Regayre LA, Pierce JR (2013) Large contribution of natural aerosols to uncertainty in indirect forcing. Nature 503(7474):67–71. https://doi.org/10.1038/nature12674

    Article  Google Scholar 

  • Cherian R, Quaas J, Salzmann M, Tomassini L (2017) Black carbon indirect radiative effects in a climate model. Tellus Ser B Chem Phys Meteorol 69(1):1369342

    Article  Google Scholar 

  • Ching J, West M, Riemer N (2018) Quantifying impacts of aerosol mixing state on nucleation-scavenging of black carbon aerosol particles. Atmosphere 9(1):17. https://doi.org/10.3390/atmos9010017

    Article  Google Scholar 

  • Cohen JB, Wang C (2014) Estimating global black carbon emissions using a top-down Kalman Filter approach. J Geophys Res 119(1):307–323. https://doi.org/10.1002/2013JD019912

    Article  Google Scholar 

  • Crippa M, Guizzardi D, Muntean M, Schaaf E, Dentener F, van Aardenne JA, Monni S, Doering U, Olivier JGJ, Pagliari V, Janssens-Maenhout G (2018) Gridded emissions of air pollutants for the period 1970-2012 within EDGAR v4.3.2. In: Earth system science data, vol 10(4). Copernicus GmbH, pp. 1987–2013. https://doi.org/10.5194/essd-10-1987-2018

  • EEA (European Environment Agency) (2019) EMEP/EEA air pollutant emission inventory guidebook 2019—technical guidance to prepare national emission inventories. EEA Report No 13/2019. Copenhagen, Denmark

  • Emerson EW, Katich JM, Schwarz JP, McMeeking GR, Farmer DK (2018) Direct measurements of dry and wet deposition of black carbon over a grassland. J Geophys Res Atmos 123(21):12277–12290. https://doi.org/10.1029/2018JD028954

    Article  Google Scholar 

  • Environment and climate change Canada (2019) Canada’s black carbon inventory 2013–2017

  • Evans M, Kholod N, Kuklinski T, Denysenko A, Smith SJ, Staniszewski A, Hao WM, Liu L, Bond TC (2017) Black carbon emissions in Russia: a critical review. Atmos Environ 163:9–21. https://doi.org/10.1016/j.atmosenv.2017.05.026

    Article  Google Scholar 

  • Friebel F, Lobo P, Neubauer D, Lohmann U, Drossaart Van Dusseldorp S, Mühlhofer E, Mensah AA (2019) Impact of isolated atmospheric aging processes on the cloud condensation nuclei-activation of soot particles. Atmos Chem Phys 19:15545–15567. https://doi.org/10.5194/acp-2019-504

    Article  Google Scholar 

  • Gliß J, Mortier A, Schulz M, Andrews E, Balkanski Y, Bauer SE, Benedictow AM, Bian H, Checa-Garcia R, Chin M, Ginoux P, Griesfeller JJ, Heckel A, Kipling Z, Kirkevåg A, Kokkola H, Laj P, Le Sager P, Lund MT, Tsyro SG (2021) Aerocom Phase III multi-model evaluation of the aerosol life cycle and optical properties using ground- and space-based remote sensing as well as surface in situ observations. Atmos Chem Phys 21(1):87–128. https://doi.org/10.5194/acp-21-87-2021

    Article  Google Scholar 

  • Granier C, Bessagnet B, Bond T, D’Angiola A, van der Gon HD, Frost GJ, Heil A, Kaiser JW, Kinne S, Klimont Z, Kloster S, Lamarque JF, Liousse C, Masui T, Meleux F, Mieville A, Ohara T, Raut JC, Riahi K, van Vuuren DP (2011) Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim Change 109(1):163–190. https://doi.org/10.1007/s10584-011-0154-1

    Article  Google Scholar 

  • Hodnebrog Ø, Myhre G, Samset BH (2014) How shorter black carbon lifetime alters its climate effect. Nat Commun. https://doi.org/10.1038/ncomms6065

    Article  Google Scholar 

  • Hoesly RM, Smith SJ, Feng L, Klimont Z, Janssens-Maenhout G, Pitkanen T, Seibert JJ, Vu L, Andres RJ, Bolt RM, Bond TC, Dawidowski L, Kholod N, Kurokawa JI, Li M, Liu L, Lu Z, Moura MCP, O’Rourke PR, Zhang Q (2018) Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci Model Dev 11(1):369–408. https://doi.org/10.5194/gmd-11-369-2018

    Article  Google Scholar 

  • Huang L, Gong SL, Jia CQ, Lavoué D (2010) Importance of deposition processes in simulating the seasonality of the Arctic black carbon aerosol. J Geophys Res Atmos. https://doi.org/10.1029/2009JD013478

    Article  Google Scholar 

  • Jurado E, Dachs J, Duarte CM, Simó R (2008) Atmospheric deposition of organic and black carbon to the global oceans. Atmos Environ 42(34):7931–7939. https://doi.org/10.1016/j.atmosenv.2008.07.029

    Article  Google Scholar 

  • Kang S, Zhang Y, Qian Y, Wang H (2020) A review of black carbon in snow and ice and its impact on the cryosphere. In: Earth-science reviews, vol 210. Elsevier B.V., Amsterdam. https://doi.org/10.1016/j.earscirev.2020.103346

  • Kanji ZA, Welti A, Corbin JC, Mensah AA (2020) Black carbon particles do not matter for immersion mode ice nucleation. Geophys Res Lett. https://doi.org/10.1029/2019GL086764

    Article  Google Scholar 

  • Kipling Z, Stier P, Schwarz JP, Perring AE, Spackman JR, Mann GW, Johnson CE, Telford PJ (2013) Constraints on aerosol processes in climate models from vertically-resolved aircraft observations of black carbon. Atmos Chem Phys 13(12):5969–5986. https://doi.org/10.5194/acp-13-5969-2013

    Article  Google Scholar 

  • Klimont Z, Kupiainen K, Heyes C, Purohit P, Cofala J, Rafaj P, Borken-Kleefeld J, Schöpp W (2017) Global anthropogenic emissions of particulate matter including black carbon. Atmos Chem Phys 17(14):8681–8723. https://doi.org/10.5194/acp-17-8681-2017

    Article  Google Scholar 

  • Koch D, del Genio AD (2010) Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos Chem Phys 10(16):7685–7696. https://doi.org/10.5194/acp-10-7685-2010

    Article  Google Scholar 

  • Koch D, Schulz M, Kinne S, Mcnaughton C, Spackman JR, Balkanski Y, Bauer S, Berntsen T, Bond TC, Boucher O, Penner JE, Perlwitz J, Pitari G, Reddy S, Sahu L, Sakamoto H, Schuster G, Schwarz JP, Seland Ø, Zhao Y (2009) Evaluation of black carbon estimations in global aerosol models. Atmos Chem Phys 9:9001–9026

    Article  Google Scholar 

  • Kodros JK, Pierce JR (2017) Important global and regional differences in aerosol cloud-albedo effect estimates between simulations with and without prognostic aerosol microphysics. J Geophys Res 122(7):4003–4018. https://doi.org/10.1002/2016JD025886

    Article  Google Scholar 

  • Kulkarni G, China S, Liu S, Nandasiri M, Sharma N, Wilson J, Aiken AC, Chand D, Laskin A, Mazzoleni C, Pekour M, Shilling J, Shutthanandan V, Zelenyuk A, Zaveri RA (2016) Ice nucleation activity of diesel soot particles at cirrus relevant temperature conditions: effects of hydration, secondary organics coating, soot morphology, and coagulation. Geophys Res Lett 43(7):3580–3588. https://doi.org/10.1002/2016GL068707

    Article  Google Scholar 

  • Lamarque JF, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, van Vuuren DP (2010) Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10(15):7017–7039. https://doi.org/10.5194/acp-10-7017-2010

    Article  Google Scholar 

  • Levin EJT, Mcmeeking GR, Demott PJ, Mccluskey CS, Stockwell CE, Yokelson RJ, Kreidenweis SM (2014) A new method to determine the number concentrations of refractory black carbon ice nucleating particles. Aerosol Sci Technol 48(12):1264–1275. https://doi.org/10.1080/02786826.2014.977843

    Article  Google Scholar 

  • Li M, Zhang Q, Kurokawa JI, Woo JH, He K, Lu Z, Ohara T, Song Y, Streets DG, Carmichael GR, Cheng Y, Hong C, Huo H, Jiang X, Kang S, Liu F, Su H, Zheng B (2017a) MIX: a mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos Chem Phys 17(2):935–963. https://doi.org/10.5194/acp-17-935-2017

    Article  Google Scholar 

  • Li M, Liu H, Geng G, Hong C, Liu F, Song Y, Tong D, Zheng B, Cui H, Man H, Zhang Q, He K (2017b) Anthropogenic emission inventories in China: a review. Natl Sci Rev 4(6):834–866. https://doi.org/10.1093/nsr/nwx150

    Article  Google Scholar 

  • Lund MT, Berntsen TK, Samset BH (2017) Sensitivity of black carbon concentrations and climate impact to aging and scavenging in OsloCTM2-M7. Atmos Chem Phys 17(9):6003–6022. https://doi.org/10.5194/acp-17-6003-2017

    Article  Google Scholar 

  • Lund MT, Samset BH, Skeie RB, Watson-Parris D, Katich JM, Schwarz JP, Weinzierl B (2018) Short black carbon lifetime inferred from a global set of aircraft observations. NPJ Clim Atmos Sci. https://doi.org/10.1038/s41612-018-0040-x

    Article  Google Scholar 

  • Mahajan S, Evans KJ, Hack JJ, Truesdale JE (2013) Linearity of climate response to increases in black carbon aerosols. J Clim 26(20):8223–8237. https://doi.org/10.1175/JCLI-D-12-00715.1

    Article  Google Scholar 

  • Mahrt F, Kilchhofer K, Marcolli C, Grönquist P, David RO, Rösch M et al (2020) The impact of cloud processing on the ice nucleation abilities of soot particles at cirrus temperatures. J Geophys Res Atmos 125:e2019JD030922. https://doi.org/10.1029/2019JD030922

    Article  Google Scholar 

  • Moteki N, Kondo Y, Oshima N, Takegawa N, Koike M, Kita K, Matsui H, Kajino M (2012) Size dependence of wet removal of black carbon aerosols during transport from the boundary layer to the free troposphere. Geophys Res Lett. https://doi.org/10.1029/2012GL052034

    Article  Google Scholar 

  • Myhre G, Samset BH, Schulz M, Balkanski Y, Bauer S, Berntsen TK, Bian H, Bellouin N, Chin M, Diehl T, Easter RC, Feichter J, Ghan SJ, Hauglustaine D, Iversen T, Kinne S, Kirkeväg A, Lamarque JF, Lin G, Zhou C (2013) Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos Chem Phys 13(4):1853–1877. https://doi.org/10.5194/acp-13-1853-2013

    Article  Google Scholar 

  • Nichman L, Wolf M, Davidovits P, Onasch TB, Zhang Y, Worsnop DR, Bhandari J, Mazzoleni C, Cziczo DJ (2019) Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol. Atmos Chem Phys 19(19):12175–12194. https://doi.org/10.5194/acp-19-12175-2019

    Article  Google Scholar 

  • Ohata S, Moteki N, Mori T, Koike M, Kondo Y (2016) A key process controlling the wet removal of aerosols: new observational evidence. Sci Rep. https://doi.org/10.1038/srep34113

    Article  Google Scholar 

  • Raga GB, Vallack H, Kuylenstierna J, Dore C, Claxton R, Shindell D, Foltescu V, Cong H, Bongford-Parnell N (2018) Addressing black carbon emission inventories, climate and clean air coalition scientific advisory panel. France, Paris

    Google Scholar 

  • Samset BH, Myhre G (2015) Climate response to externally mixed black carbon as a function of altitude. J Geophys Res 120(7):2913–2927. https://doi.org/10.1002/2014JD022849

    Article  Google Scholar 

  • Samset BH, Myhre G, Schultz M, Balkanski Y, Bauer S, Berntsen TK, Bian H, Bellouin N, Diehl T, Easter RC, Ghan SJ, Iversen T, Kinne S, Kirkevag A, Lamarque J-F, Lin G, Liu X, Penner JE, Seland Ø, Skeiel RB, Zhang K (2013) Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmos Chem Phys 13:2423–2434. https://doi.org/10.5194/acp-13-2423-2013

    Article  Google Scholar 

  • Samset BH, Myhre G, Herber A, Kondo Y, Li SM, Moteki N, Koike M, Oshima N, Schwarz JP, Balkanski Y, Bauer SE, Bellouin N, Berntsen TK, Bian H, Chin M, Diehl T, Easter RC, Ghan SJ, Iversen T, Zhang K (2014) Modelled black carbon radiative forcing and atmospheric lifetime in AeroCom Phase II constrained by aircraft observations. Atmos Chem Phys 14(22):12465–12477. https://doi.org/10.5194/acp-14-12465-2014

    Article  Google Scholar 

  • Samset BH, Stjern CW, Andrews E, Kahn RA, Myhre G, Schulz M, Schuster GL (2018) Aerosol absorption: progress towards global and regional constraints. Curr Clim Change Rep 4(2):65–83. https://doi.org/10.1007/s40641-018-0091-4

    Article  Google Scholar 

  • Sand M, Iversen T, Bohlinger P, Kirkevåg A, Seierstad I, Seland Ø (2015) American Meteorological Society a standardized global climate model study showing unique properties for the climate response to black carbon aerosols. Sorteberg Source J Clim 28(6):2512–2526. https://doi.org/10.2307/26194470

    Article  Google Scholar 

  • Sasser E, Hemby J, Adler K, Anenberg S, Bailey C, Brockman L, Chappell L, DeAngelo B, Damberg R, Dawson J, Frank N, Geller M, Hagler G, Hemming B, Jantarasami L, Luben T, Mitchell J, Moss J (2012) Report to congress on black carbon. Available at https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100EIJZ.TXT. EPA

  • Schafer JS, Eck TF, Holben BN, Thornhill KL, Anderson BE, Sinyuk A, Giles DM, Winstead EL, Ziemba LD, Beyersdorf AJ, Kenny PR, Smirnov A, Slutsker I (2014) Intercomparison of aerosol single-scattering albedo derived from AERONET surface radiometers and LARGE in situ aircraft profiles during the 2011 DRAGON-MD and DISCOVER-AQ experiments. J Geophys Res Atmos 119(12):7439–7452. https://doi.org/10.1002/2013JD021166

    Article  Google Scholar 

  • Schuster GL, Dubovik O, Arola A (2016) Remote sensing of soot carbon—part 1: distinguishing different absorbing aerosol species. Atmos Chem Phys 16(3):1565–1585. https://doi.org/10.5194/acp-16-1565-2016

    Article  Google Scholar 

  • Schwarz JP, Samset BH, Perring AE, Spackman JR, Gao RS, Stier P, Schulz M, Moore FL, Ray EA, Fahey DW (2013) Global-scale seasonally resolved black carbon vertical profiles over the Pacific. Geophys Res Lett 40(20):5542–5547. https://doi.org/10.1002/2013GL057775

    Article  Google Scholar 

  • Schwarz JP, Weinzierl B, Samset BH, Dollner M, Heimerl K, Markovic MZ, Perring AE, Ziemba L (2017) Aircraft measurements of black carbon vertical profiles show upper tropospheric variability and stability. Geophys Res Lett 44(2):1132–1140. https://doi.org/10.1002/2016GL071241

    Article  Google Scholar 

  • Seinfeld JH, Bretherton C, Carslaw KS, Coe H, Demott PJ, Dunlea EJ, Feingold G, Ghan S, Guenther AB, Kahn R, Kraucunas I, Kreidenweis SM, Molina MJ, Nenes A, Penner JE, Prather KA, Ramanathan V, Ramaswamy V, Rasch PJ, Wood R (2016) Improving our fundamental understanding of the role of aerosol-cloud interactions in the climate system. Arthur M. Sackler Colloquium of the National Academy of Sciences, Mabel Beckman Center of the National Academies of Sciences and Engineering, Irvine, CA, June 23–24, 2015. https://doi.org/10.1073/pnas.1514043113/-/DCSupplemental

  • Sockol A, Small Griswold JD (2017) Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions. Earth Space Sci 4(8):485–505. https://doi.org/10.1002/2017EA000288

    Article  Google Scholar 

  • Stevens B, Bony S (2013) What are climate models missing? Science 340(6136):1053–1054. https://doi.org/10.1126/science.1237554

    Article  Google Scholar 

  • Stjern CW, Samset BH, Myhre G, Forster PM, Hodnebrog Ø, Andrews T, Boucher O, Faluvegi G, Iversen T, Kasoar M, Kharin V, Kirkevåg A, Lamarque JF, Olivié D, Richardson T, Shawki D, Shindell D, Smith CJ, Takemura T, Voulgarakis A (2017) Rapid adjustments cause weak surface temperature response to increased black carbon concentrations. J Geophys Res Atmos 122(21):11462–11481. https://doi.org/10.1002/2017JD027326

    Article  Google Scholar 

  • Szopa S, Naik V, Adhikary B, Artaxo P, Berntsen T, Collins WD, Fuzzi S, Gallardo L, Kiendler Scharr A, Klimont Z, Liao H, Unger N, Zanis P (2021) Short-lived climate forcers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate change 2021: the physical science basis contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Tegen I, Heinold B (2018) Large-scale modeling of absorbing aerosols and their semi-direct effects. Atmosphere 9(10):380. https://doi.org/10.3390/atmos9100380

    Article  Google Scholar 

  • Twomey SA (1959) The nuclei of natural cloud formation. Part II: The supersaturation in natural clouds and the variation of cloud droplet concentrations. Geofis Pura Appl 43:227–242

    Article  Google Scholar 

  • Vergara-Temprado J, Holden MA, Orton TR, O’Sullivan D, Umo NS, Browse J, Reddington C, Baeza-Romero MT, Jones JM, Lea-Langton A, Williams A, Carslaw KS, Murray BJ (2018) Is black carbon an unimportant ice-nucleating particle in mixed-phase clouds? J Geophys Res Atmos 123(8):4273–4283. https://doi.org/10.1002/2017JD027831

    Article  Google Scholar 

  • Wang L, Li Z, Tian Q, Ma Y, Zhang F, Zhang Y, Li D, Li K, Li L (2013) Estimate of aerosol absorbing components of black carbon, brown carbon, and dust from ground-based remote sensing data of sun-sky radiometers. J Geophys Res Atmos 118(12):6534–6543. https://doi.org/10.1002/jgrd.50356

    Article  Google Scholar 

  • Wang Z, Lin L, Xu Y, Che H, Zhang X, Zhang H, Dong W, Wang C, Gui K, Xie B (2021) Incorrect Asian aerosols affecting the attribution and projection of regional climate change in CMIP6 models. NPJ Clim Atmos Sci 4:2. https://doi.org/10.1038/s41612-020-00159-2

    Article  Google Scholar 

  • Winkler P (1973) The growth of atmospheric aerosol particles as a function of the relative humidity—II. An improved concept of mixed nuclei. In: Aerosol science, vol 4, pp 373–387. https://doi.org/10.1088/0031-8949/37/2/008

  • Xu J, Zhang J, Liu J, Yi K, Xiang S, Hu X, Wang Y, Tao S, Ban-Weiss G (2019) Influence of cloud microphysical processes on black carbon wet removal, global distributions, and radiative forcing. Atmos Chem Phys 19(3):1587–1603. https://doi.org/10.5194/acp-19-1587-2019

    Article  Google Scholar 

  • Yang Q, Easter RC, Campuzano-Jost P, Jimenez JL, Fast JD, Ghan SJ, Wang H, Berg LK, Barth MC, Liu Y, Shrivastava MB, Singh B, Morrison H, Fan J, Ziegler CL, Bela M, Apel E, Diskin GS, Mikoviny T, Wisthaler A (2015) Aerosol transport and wet scavenging in deep convective clouds: a case study and model evaluation using a multiple passive tracer analysis approach. J Geophys Res 120(16):8448–8468. https://doi.org/10.1002/2015JD023647

    Article  Google Scholar 

  • Yasunari TJ, Tan Q, Lau KM, Bonasoni P, Marinoni A, Laj P, Ménégoz M, Takemura T, Chin M (2013) Estimated range of black carbon dry deposition and the related snow albedo reduction over Himalayan glaciers during dry pre-monsoon periods. Atmos Environ 78:259–267. https://doi.org/10.1016/j.atmosenv.2012.03.031

    Article  Google Scholar 

  • Zhang J, Liu J, Tao S, Ban-Weiss GA (2015) Long-range transport of black carbon to the Pacific Ocean and its dependence on aging timescale. Atmos Chem Phys 15(20):11521–11535. https://doi.org/10.5194/acp-15-11521-2015

    Article  Google Scholar 

  • Zheng B et al (2018) Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos Chem Phys 18:14095–14111. https://doi.org/10.5194/acp-18-14095-2018

    Article  Google Scholar 

  • Zhuang B, Liu Q, Wang T, Yin C, Li S, Xie M, Jiang F, Mao H (2013) Investigation on semi-direct and indirect climate effects of fossil fuel black carbon aerosol over China. Theoret Appl Climatol 114(3–4):651–672. https://doi.org/10.1007/s00704-013-0862-8

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

JE: conceptualization, supervision, writing—review and editing. EN: investigation, methodology, writing—original draft MO: project administration, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mary M. Odum.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Everett, J.T., Newton, E.N. & Odum, M.M. A Review of Progress in Constraining Global Black Carbon Climate Effects. Earth Syst Environ 6, 771–785 (2022). https://doi.org/10.1007/s41748-022-00313-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41748-022-00313-1

Keywords

Navigation