Skip to main content
Log in

Flash Boiling in Sprays: Recent Developments and Modeling

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

This study aims to cover the modeling of flash boiling effects in the sprays. There is a lack of an economical and computationally efficient methodology to analyze this complex phenomenon. Flash boiling being an essential phenomenon in combustion engines is the cause of change in the spray structure, cone angle, liquid penetration length, droplet distribution, etc. The paper revisits various models used to capture the effect of the flash boiling phenomenon and identifies the drawbacks and challenges, respectively. The whole phenomenon is divided into various stages and discussed stepwise. It tries to address the issues related to the gaps in modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:

Similar content being viewed by others

Abbreviations

\( c \) :

Specific heat constant

\( D \) :

Diameter (of droplet or bubble)

\( h_{fg} \) :

Latent heat constant

\( J \) :

Number of bubbles per unit volume

\( {\text{Ja}} \) :

Jacob number

\( k \) :

Boltzmann constant

\( k_{f} \) :

Total evaporation rate of molecular species which forms bubble

\( k_{l} \) :

Thermal conductivity of liquid

\( n \) :

Number of droplets per micro-explosion

\( N_{0} \) :

Number density of liquid, (\( 6.023 \times 10^{23} /{\text{liquid}} {\text{molar}} {\text{vol}} . \))

\( M_{W} \) :

Molecular weight

\( {\mathcal{M}} \) :

Mass flow rate (for liquid phase)

\( P \) :

Pressure

\( q_{l}^{''} \) :

Heat flux to the liquid

\( r \) :

Radial coordinate

\( {\mathcal{R}} \) :

Universal gas constant

\( R \) :

Radius (of droplet or bubble)

\( t \) :

Time

\( t_{dh} \) :

Dwell time between onset of heating and bubble nucleation

\( \bar{t}_{d1} \) :

Average dwell time between jet ejection and bubble nucleation

\( t_{d2} \) :

Dwell time for bubble growth after which it bursts (or bubble lifetime)

\( T \) :

Temperature

\( {\text{We}} \) :

Weber number

\( \alpha \) :

Thermal diffusivity

\( \varepsilon \) :

Void fraction of droplet \( (R_{b}^{3} /R_{d}^{3} ) \)

\( \kappa \) :

Coefficient of dilatation viscosity

\( \mu \) :

Coefficient of shear viscosity

\( \rho \) :

Density

\( \sigma \) :

Equilibrium surface tension

\( \sigma_{g} \) :

Equilibrium surface tension

\( \omega \) :

Angular frequency of disturbance (Eq. 19)

\( 0 \) :

Initial state

\( {\text{amb}} \) :

Ambient state

\( {\text{bulk}} \) :

Bulk state of the liquid

b :

Bubble

d :

Droplet

\( {\text{ch}} \) :

Child droplet

\( i \) :

Bubble–liquid interface

\( j \) :

Liquid jet

\( l \) :

Liquid state

\( {\text{sat}} \) :

Saturated state

\( v \) :

Vapor state

References

  1. Blander M, Katz JL (1975) Bubble nucleation in liquids. AIChE J 21(5):833–848

    Article  CAS  Google Scholar 

  2. Volmer M (1926) Nucleus formation in supersaturated systems. Z Phys Chem 119:277–301

    CAS  Google Scholar 

  3. Farkas L (1927) The velocity of nucleus formation in supersaturated vapors. J Phys Chem 125:236

    CAS  Google Scholar 

  4. Becker R, Doring W (1954) Kinetic treatment of the nucleation in supersaturated vapors. Technical Memorandum 1374, NACA-TM-1374

  5. Zeldovich YB (1943) On the theory of new phase formation: cavitation. Acta Physicochem USSR 18:1

    CAS  Google Scholar 

  6. Kagan Y (1960) The kinetics of boiling of a pure liquid. Russ J Phys Chem 34:42–46

    Google Scholar 

  7. Avedisian CT, Glassman I (1981) High pressure homogeneous nucleation of bubbles within superheated binary liquid mixtures. J Heat Transfer 103(2):272–280

    Article  CAS  Google Scholar 

  8. Zeng Y, Lee CFF (2001) An atomization model for flash boiling sprays. Combust Sci Technol 169(1):45–67

    Article  CAS  Google Scholar 

  9. Shen C (2016) Modeling of biofuel-diesel multi-component fuel effects on vaporization, micro-explosion and combustion. Doctoral dissertation, University of Illinois at Urbana-Champaign

  10. Johnson DW, Woodward JL (2010) Release: a model with data to predict aerosol rainout in accidental releases, vol 24. Wiley, New York

    Book  Google Scholar 

  11. Shepherd JE, Sturtevant B (1982) Rapid evaporation at the superheat limit. J Fluid Mech 121:379–402

    Article  CAS  Google Scholar 

  12. Gyarmathy G (1982) The spherical droplet in gaseous carrier streams: review and synthesis. Multiph Sci Technol 1(1–4):99–279

    Article  CAS  Google Scholar 

  13. Lannello VG. 13. Wallis, and 1’, Rothe H (1988) Technical memorandum, liquid release, Final Report. CREARE, Inc., for CCPS, TM-1274 Rev. 8, Project 7230, Nov

  14. Bushnell DM, Gooderum PB (1968) Atomization of superheated water jets at low ambient pressures. J Spacecr Rockets 5(2):231–232

    Article  Google Scholar 

  15. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34(200):94–98

    Article  Google Scholar 

  16. Plesset MS (1949) The dynamics of cavitation bubbles. J Appl Mech 16:277–282

    Google Scholar 

  17. Scriven LE (1960) Dynamics of a fluid interface equation of motion for Newtonian surface fluids. Chem Eng Sci 12(2):98–108

    Article  CAS  Google Scholar 

  18. Rosner DE, Epstein M (1972) Effects of interface kinetics, capillarity and solute diffusion on bubble growth rates in highly supersaturated liquids. Chem Eng Sci 27(1):69–88

    Article  CAS  Google Scholar 

  19. Payvar P (1987) Mass transfer-controlled bubble growth during rapid decompression of a liquid. Int J Heat Mass Transf 30(4):699–706

    Article  CAS  Google Scholar 

  20. Arefmanesh A, Advani SG, Michaelides EE (1992) An accurate numerical solution for mass diffusion-induced bubble growth in viscous liquids containing limited dissolved gas. Int J Heat Mass Transf 35(7):1711–1722

    Article  CAS  Google Scholar 

  21. Kwak HY, Kim YW (1998) Homogeneous nucleation and macroscopic growth of gas bubble in organic solutions. Int J Heat Mass Transf 41(4–5):757–767

    Article  CAS  Google Scholar 

  22. Sher E, Bar-Kohany T, Rashkovan A (2008) Flash-boiling atomization. Prog Energy Combust Sci 34(4):417–439

    Article  CAS  Google Scholar 

  23. Neroorkar K, Schmidt D (2011) Modeling of vapor-liquid equilibrium of gasoline-ethanol blended fuels for flash boiling simulations. Fuel 90(2):665–673

    Article  CAS  Google Scholar 

  24. Negro S, Brusiani F, Bianchi GM (2011) A numerical model for flash boiling of gasoline-ethanol blends in fuel injector nozzles. SAE Int J Fuels Lubr 4(2):237–256

    Article  CAS  Google Scholar 

  25. Huang Y, Huang S, Huang R, Hong G (2016) Spray and evaporation characteristics of ethanol and gasoline direct injection in non-evaporating, transition and flash-boiling conditions. Energy Convers Manag 108:68–77

    Article  CAS  Google Scholar 

  26. Forster H, Zuber N (1954) Growth of a vapor bubble in a superheated liquid. J Appl Phys 25(4):474–478

    Article  CAS  Google Scholar 

  27. Mohammadein SA, Gouda SA (2006) Temperature distribution in a mixture surrounding a growing vapour bubble. Heat Mass Transf 42(5):359–363

    Article  Google Scholar 

  28. Lee HS, Merte H Jr (1996) Spherical vapor bubble growth in uniformly superheated liquids. Int J Heat Mass Transf 39(12):2427–2447

    Article  CAS  Google Scholar 

  29. Lee HS, Merte H Jr (1996) Hemispherical vapor bubble growth in microgravity: experiments and model. Int J Heat Mass Transf 39(12):2449–2461

    Article  CAS  Google Scholar 

  30. Robinson AJ, Judd RL (2004) The dynamics of spherical bubble growth. Int J Heat Mass Transf 47(23):5101–5113

    Article  Google Scholar 

  31. Xi X, Liu H, Jia M, Xie M, Yin H (2017) A new flash boiling model for single droplet. Int J Heat Mass Transf 107:1129–1137

    Article  CAS  Google Scholar 

  32. Lien YC (1969) Bubble growth rates at reduced pressure. Doctoral dissertation, Massachusetts Institute of Technology

  33. Plesset MS, Zwick SA (1952) A nonsteady heat diffusion problem with spherical symmetry. J Appl Phys 23(1):95–98

    Article  Google Scholar 

  34. Plesset MS, Zwick SA (1954) The growth of vapor bubbles in superheated liquids. J Appl Phys 25(4):493–500

    Article  CAS  Google Scholar 

  35. Prosperetti A, Plesset MS (1978) Vapour-bubble growth in a superheated liquid. J Fluid Mech 85(2):349–368

    Article  CAS  Google Scholar 

  36. Dalle Donne M, Ferranti MP (1975) The growth of vapor bubbles in superheated sodium. Int J Heat Mass Transf 18(4):477–493

    Article  CAS  Google Scholar 

  37. Mikic BB, Rohsenow WM, Griffith P (1970) On bubble growth rates. Int J Heat Mass Transf 13(4):657–666

    Article  Google Scholar 

  38. Theofanous TG, Patel PD (1976) Universal relations for bubble growth. Int J Heat Mass Transf 19(4):425–429

    Article  Google Scholar 

  39. Theofanous T, Biasi L, Isbin HS, Fauske H (1969) A theoretical study on bubble growth in constant and time-dependent pressure fields. Chem Eng Sci 24(5):885–897

    Article  CAS  Google Scholar 

  40. Board SJ, Duffey RB (1971) Spherical vapour bubble growth in superheated liquids. Chem Eng Sci 26(3):263–274

    Article  CAS  Google Scholar 

  41. Oza RD, Sinnamon JF (1983) An experimental and analytical study of flash-boiling fuel injection. SAE Trans 92:948–962

    Google Scholar 

  42. Oza RD (1984) On the mechanism of flashing injection of initially subcooled fuels. J Fluids Eng 106(1):105–109

    Article  Google Scholar 

  43. Reitz RD (1990) A photographic study of flash-boiling atomization. Aerosol Sci Technol 12(3):561–569

    Article  CAS  Google Scholar 

  44. Senda J, Hojyo Y, Fujimoto H (1994) Modeling on atomization and vaporization process in flash boiling spray. Jsae Rev 15(4):291–296

    Article  CAS  Google Scholar 

  45. Sher E, Elata C (1977) Spray formation from pressure cans by flashing. Ind Eng Chem Process Des Dev 16(2):237–242

    Article  CAS  Google Scholar 

  46. Razzaghi M (1989) Droplet size estimation of two-phase flashing jets. Nucl Eng Des 114(1):115–124

    Article  CAS  Google Scholar 

  47. Plesset MS, Whipple CG (1974) Viscous effects in Rayleigh–Taylor instability. Phys Fluids 17(1):1–7

    Article  Google Scholar 

  48. Fedoseev VA (1958) Dispersion of a stream of superheated liquid. Colloid J 20(4):463–466

    Google Scholar 

  49. Adachi M, McDonell VG, Tanaka D, Senda J, Fujimoto H (1997) Characterization of fuel vapor concentration inside a flash boiling spray (No. 970871). SAE Technical Paper

  50. Kawano D, Goto Y, Odaka M, Senda J (2004) Modeling atomization and vaporization processes of flash-boiling spray (No. 2004-01-0534). SAE Technical Paper

  51. Suma S, Koizumi M (1977) Internal boiling atomization by rapid pressure reduction of liquids. Trans Jpn Soc Mech Eng 43(376):4608

    Article  Google Scholar 

  52. Zeng Y, Chia-fon FL (2007) Modeling droplet breakup processes under micro-explosion conditions. Proc Combust Inst 31(2):2185–2193

    Article  Google Scholar 

  53. Brown R, York JL (1962) Sprays formed by flashing liquid jets. AIChE J 8(2):149–153

    Article  CAS  Google Scholar 

  54. Lienhard JH, Stephenson JM (1966) Temperature and scale effects upon cavitation and flashing in free and submerged jets. J Basic Eng 88(2):525–531

    Article  Google Scholar 

  55. Bushnell DM, Gooderum PB (1969) Measurement of mean drop sizes for sprays from superheated waterjets. J Spacecr Rockets 6(2):197–198

    Article  Google Scholar 

  56. Lienhard JH, Day JB (1970) The breakup of superheated liquid jets. J Basic Eng 92(3):515–521

    Article  Google Scholar 

  57. Crowe CT, Comfort III WJ (1978) Atomization mechanisms in single-component, two-phase, nozzle flows (No. UCRL-79656 (Rev. 1); CONF-780820-4). California Univ., Livermore (USA). Lawrence Livermore Lab

  58. Kitamura Y, Morimitsu H, Takahashi T (1986) Critical superheat for flashing of superheated liquid jets. Ind Eng Chem Fundam 25(2):206–211

    Article  CAS  Google Scholar 

  59. Zuo B, Gomes AM, Rutland CJ (2000) Modelling superheated fuel sprays and vaporization. Int J Engine Res 1(4):321–336

    Article  CAS  Google Scholar 

  60. Khan MM, Hélie J, Gorokhovski M, Sheikh NA (2017) Experimental and numerical study of flash boiling in gasoline direct injection sprays. Appl Therm Eng 123:377–389

    Article  CAS  Google Scholar 

  61. Senecal PK, Schmidt DP, Nouar I, Rutland CJ, Reitz RD, Corradini ML (1999) Modeling high-speed viscous liquid sheet atomization. Int J Multiph Flow 25(6–7):1073–1097

    Article  CAS  Google Scholar 

  62. VanDerWege BA (1999) The effects of fuel volatility and operating conditions on sprays from pressure-swirl fuel injectors. Doctoral dissertation, Massachusetts Institute of Technology

  63. Vanderwege BA, Hochgreb S (1998) The effect of fuel volatility on sprays from high-pressure swirl injectors. Twenty-Seventh Symposium (International) on Combustion/The Combustion Institute, vol 27(2), pp 1865–1871

  64. Cleary V, Bowen P, Witlox H (2007) Flashing liquid jets and two-phase droplet dispersion: I. Experiments for derivation of droplet atomisation correlations. J Hazard Mater 142(3):786–796

    Article  CAS  Google Scholar 

  65. Witlox H, Harper M, Bowen P, Cleary V (2007) Flashing liquid jets and two-phase droplet dispersion: II. Comparison and validation of droplet size and rainout formulations. J Hazard Mater 142(3):797–809

    Article  CAS  Google Scholar 

  66. Sovani SD, Sojka PE, Lefebvre AH (2001) Effervescent atomization. Prog Energy Combust Sci 27(4):483–521

    Article  Google Scholar 

  67. Deich ME, Filippov GA (1970) The gas dynamics of two-phase media (No. FTD-HT-23-188-69). FOREIGN TECHNOLOGY DIV WRIGHT-PATTERSON AFB OHIO

  68. Bar-Kohany T, Sher E (2004) Subsonic effervescent atomization: a theoretical approach. At Sprays 14(6):495–510

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashoke De.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, B., De, A. Flash Boiling in Sprays: Recent Developments and Modeling. J Indian Inst Sci 99, 93–104 (2019). https://doi.org/10.1007/s41745-019-0104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-0104-x

Navigation