Skip to main content
Log in

Numerical Modeling of Evaporation and Combustion of Isolated Liquid Fuel Droplets: a Review

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Understanding the transport processes during evaporation and combustion of isolated liquid fuel droplet is highly important in several applications involving sprays. Comprehensive numerical models assist in carrying out simulations involving interlinked transport processes in liquid and gas phases using proper interface coupling conditions. The predictions from such numerical models reveal flow, temperature and species fields, with which the evaporation, as well as combustion characteristics, can be thoroughly analyzed. In this article, a detailed review of numerical models used to simulate evaporation of isolated droplets under several operating conditions is presented. This includes evaporation in high-pressure conditions, where real gas effects and solubility of ambient gas into the liquid droplet, come into play. Subsequently, a review of droplet combustion models, which are comprehensive enough to reveal the burning characteristics of an isolated droplet, is presented. Importance of liquid phase motion on evaporation and combustion behavior and water absorption in the case of alcohol droplets are reported. This review also includes modeling concepts applied to multi-component droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:

(plotted from data reported in Sahu and Raghavan100).

Figure 8:

Similar content being viewed by others

References

  1. Williams A (1973) Combustion of droplet of liquid fuels: a review. Combust Flame 21:1–31

    CAS  Google Scholar 

  2. Faeth GM (1977) Current status of droplet and liquid combustion. Prog Energy Combust Sci 3:191–224

    CAS  Google Scholar 

  3. Law CK (1982) Recent advances in droplet vaporization and combustion. Prog Energy Combust Sci 8:171–201

    CAS  Google Scholar 

  4. Faeth GM (1983) Evaporation and combustion of sprays. Prog Energy Combust Sci 9:1–76

    CAS  Google Scholar 

  5. Sirignano WA (1983) Fuel droplet vaporization and spray combustion theory. Prog Energy Combust Sci 9:291–322

    CAS  Google Scholar 

  6. Dwyer HA (1989) Calculations of droplet dynamics in high temperature environment. Prog Energy Combust Sci 15:131–158

    CAS  Google Scholar 

  7. Law CK, Faeth GM (1994) Opportunities and challenges of combustion in microgravity. Prog Energy Combust Sci 20:65–113

    Google Scholar 

  8. Gilver SD, Abraham J (1996) Supercritical droplet vaporization and combustion studies. Prog Energy Combust Sci 22:1–28

    Google Scholar 

  9. Biroul M, Gökalp I (2006) Current status of droplet evaporation in turbulent flows. Prog Energy Combust Sci 32:408–423

    Google Scholar 

  10. Tong AY, Sirognanao WA (1986) Multicomponent droplet vaporization in a high temperature gas. Combust Flame 66:221–235

    CAS  Google Scholar 

  11. Gogos G, Ayyaswamy PS (1988) A model for the evaporation of a slowly moving droplet. Combust Flame 74:111–129

    CAS  Google Scholar 

  12. Aharon I, Shaw BD (1996) Marangoni instability of bi-component droplet gasification. Phys Fluids 8:1820–1827

    CAS  Google Scholar 

  13. Ha VM, Lai CL (2002) Onset of Marangoni instability of a two-component evaporating droplet. Int J Heat Mass Transf 45:5143–5158

    CAS  Google Scholar 

  14. Ha VM, Lai CL (2004) Theoretical analysis of Marangoni instability of an evaporating droplet by energy method. Int J Heat Mass Transf 45:5143–5158

    Google Scholar 

  15. Ra Y, Reitz RD (2003) The application of a multicomponent droplet vaporization model to gasoline direct injection engines. Int J Engine Res 4:193–218

    CAS  Google Scholar 

  16. Tonini S, Cossali GE (2012) An analytical model of liquid drop evaporation in gaseous environment. Int J Ther Sci 57:45–53

    Google Scholar 

  17. Law CK (1978) Internal boiling and superheating in vaporizing multicomponent droplets. Am Inst Chem Eng J 24:626–632

    CAS  Google Scholar 

  18. Abramzon B, Sirignanao W (1989) Droplet vaporization model for spray combustion calculations. Int J Heat Mass Transf 32:1605–1618

    CAS  Google Scholar 

  19. Haywood RJ, Nafziger R, Renksizbulut MA (1989) A detailed examination of gas and liquid phase transient processes in convective droplet evaporation. J Heat Transf 111:495–502

    CAS  Google Scholar 

  20. Megaridis CM, Sirignano WA (1990) Numerical modeling of a vaporizing multicomponent droplet. Proc Combust Inst 23:1413–1421

    Google Scholar 

  21. Megaridis CM, Sirignano WA (1993) Multicomponent droplet vaporization in a laminar convective environment. Combust Sci Technol 87:27–44

    CAS  Google Scholar 

  22. Chiang CH, Raju MS, Sirignano WA (1992) Numerical analysis of convecting, vaporizing fuel droplet with variable properties. Int J Heat Mass Transf 35:1307–1324

    CAS  Google Scholar 

  23. Megaridis CM (1993) Liquid phase variable property effects in multicomponent droplet convective evaporation. Combust Sci Technol 92:293–311

    Google Scholar 

  24. Megaridis CM (1993) Comparison between experimental measurements and numerical predictions of internal temperature distributions of a droplet vaporizing under high convective conditions. Combust Flame 93:287–302

    CAS  Google Scholar 

  25. Renksizbulut M, Bussmann M (1993) Multicomponent droplet evaporation at intermediate Reynolds numbers. Int J Heat Mass Transf 36:2827–2835

    CAS  Google Scholar 

  26. Haywood RJ, Renksizbulut M, Raithby GD (1994) Transient deformation and evaporation of droplets at intermediate Reynolds numbers. Int J Heat Mass Transf 37:1401–1409

    CAS  Google Scholar 

  27. Shih AT, Megaridis CM (1995) Suspended droplet evaporation modeling in a laminar convective environment. Combust Flame 102:256–270

    CAS  Google Scholar 

  28. Shih AT, Megaridis CM (1996) Thermocapillary flow effects on convective droplet evaporation. Int J Heat Mass Transf 39:247–257

    CAS  Google Scholar 

  29. Tamim J, Hallet WLH (1995) A continuous thermodynamics model for multicomponent droplet vaporization. Chem Eng Sci 50:2933–2942

    CAS  Google Scholar 

  30. Dwyer HA, Aharon I, Shaw BD, Niazmand H (1996) Surface tension influences on methanol droplet vaporization in the presence of water. Proc Combust Inst 26:1613–1619

    Google Scholar 

  31. Dwyer HA, Shaw BD (2001) Marangoni and stability studies on fiber-supported methanol droplets evaporating in reduced gravity. Combust Sci Technol 162:331–346

    CAS  Google Scholar 

  32. Aggarwal SK, Mongia HC (2002) Multicomponent and high-pressure effects on droplet vaporization. J Eng Gas Turbines Power 124:248–255

    CAS  Google Scholar 

  33. Gartung K, Arndt S, Seibel C (2002) Vaporization of multicomponent fuel droplets: numerical and experimental examination. In: Proc. of 18nd annual conference on liquid atomization and spray systems (Europe), Zaragoza, Spain, September 9–11

  34. Sazhin SS (2006) Advanced models of fuel droplet heating and evaporation. Prog Energy Combust Sci 32:162–214

    CAS  Google Scholar 

  35. Yang S, Ra Y, Reitz RD (2010) A vaporization model for realistic multicomponent fuels. In: Proc. of 22nd annual conference on liquid atomization and spray systems (USA), Cincinnati, OH, May 16–19

  36. Elwardany AE, Gusev IG, Castanet G, Lemoine F, Sazhin SS (2011) Mono- and multicomponent droplet cooling/heating and evaporation: comparative analysis of numerical models. Atom Sprays 21:907–931

    Google Scholar 

  37. Sazhin SS, Elwardany AE, Krutitskii PA, Depredurand V, Castanet G, Lemoine F, Sazhina EM, Heikal MR (2011) Multi-component droplet heating and evaporation: numerical simulation versus experimental data. Int J Therm Sci 50:1164–1180

    CAS  Google Scholar 

  38. Strotos G, Gavaises M, Theodorakakos A, Bergeles G (2011) Numerical investigation of the evaporation of two-component droplets. Fuel 90:1492–1507

    CAS  Google Scholar 

  39. Raghuram S, Raghavan V (2012) Numerical study of transient evaporation of moving two-component fuel droplets. At Sprays 22:493–513

    CAS  Google Scholar 

  40. Raghuram S, Raghavan V, Pope DN, Gogos G (2012) Numerical study of Marangoni convection during transient evaporation of two-component droplet under forced convective environment. Int J Heat Mass Transf 55:7949–7957

    CAS  Google Scholar 

  41. Raghuram S, Raghavan V, Pope DN, Gogos G (2013) Two-phase modeling of evaporation characteristics of blended methanol-ethanol droplets. Int J Multiph Flow 52:46–59

    CAS  Google Scholar 

  42. Tonini S, Cossali GE (2015) A novel formulation of multi-component drop evaporation models for spray applications. Int J Therm Sci 89:245–253

    Google Scholar 

  43. Azimi A, Arabkhalaj A, Ghassemi H, Markadeh RS (2017) Effects of unsteadiness on droplet evaporation. Int J Ther Sci 120:354–365

    CAS  Google Scholar 

  44. Strotos G, Malgarinos I, Nikolopoulos N, Gavaises M (2016) Predicting the evaporation rate of stationary droplets with the VOF methodology for a wide range of ambient temperature conditions. Int J Therm Sci 109:253–262

    Google Scholar 

  45. Matlosz RL, Leipziger S, Torda TP (1972) Investigation of liquid droplet evaporation in a high temperature and high pressure environment. Int J Heat Mass Transf 15:831–852

    CAS  Google Scholar 

  46. Kadota T, Hiroyasu H (1976) Evaporation of a single droplet at elevated pressures and temperatures. Bull JSME 19:1515–1521

    CAS  Google Scholar 

  47. Manrique JA, Borman GL (1969) Calculations of steady state droplet vaporization at high ambient pressure. Int J Heat Mass Transf 12:1081–1095

    CAS  Google Scholar 

  48. Lazar RS, Faeth GM (1971) Bipropellant droplet combustion in the vicinity of the critical point. Proc Combust Inst 13:743–753

    Google Scholar 

  49. Canada GS, Faeth GM (1973) Fuel droplet burning rates at high pressures. Proc Combust Inst 14:1345–1354

    Google Scholar 

  50. Curtis EW, Farrell PV (1988) Droplet vaporization in a super critical microgravity environment. Acta Astronaut 17:1189–1193

    CAS  Google Scholar 

  51. Curtis EW, Farrell PV (1992) A numerical study of high-pressure droplet vaporization. Combust Flame 90:85–102

    CAS  Google Scholar 

  52. Hsieh KC, Shuen JS, Yang V (1991) Droplet vaporization in high-pressure environments I: near critical conditions. Combust Sci Technol 76:111–132

    CAS  Google Scholar 

  53. Jia H, Gogos G (1992) Investigation of liquid droplet evaporation in sub-critical and super-critical gaseous environments. J Thermophys Heat Transf 6:738–745

    CAS  Google Scholar 

  54. Jia H, Gogos G (1993) High pressure droplet vaporization; effects of liquid phase gas solubility. Int J Heat Mass Transf 36:4419–4431

    CAS  Google Scholar 

  55. Delplanque JP, Sirignano WA (1993) Numerical study of the transient vaporization of an oxygen droplet at sub-critical and super-critical conditions. Int J Heat Mass Transf 36:303–314

    CAS  Google Scholar 

  56. Haldenwang P, Nicoli C, Daou J (1996) High pressure vaporization of LOX droplet crossing the critical conditions. Int J Heat Mass Transf 39:3453–3464

    CAS  Google Scholar 

  57. Zhu GS, Aggarwal SK (2000) Droplet super-critical vaporization with emphasis on equation of state. Int J Heat Mass Transf 43:1157–1171

    Google Scholar 

  58. Zhu GS, Aggarwal SK (2002) Fuel droplet evaporation in a super-critical environment. ASME J Eng Gas Turbines Power 124:762–770

    CAS  Google Scholar 

  59. Gogos G, Soh S, Pope DN (2003) Effects of gravity and ambient pressure on liquid fuel droplet evaporation. Int J Heat Mass Transf 46:283–296

    CAS  Google Scholar 

  60. Consolini L, Aggarwal SK, Murad S (2003) A molecular dynamics simulation of droplet evaporation. Int J Heat Mass Transf 46:3179–3188

    CAS  Google Scholar 

  61. Zhang H (2004) Numerical research on a vaporizing fuel droplet in a forced convective environment. Int J Multiph Flow 30(2):181–198

    CAS  Google Scholar 

  62. Zhang H, Raghavan V, Gogos G (2008) Subcritical and supercritical droplet evaporation within a zero gravity environment: low Weber number relative motion. Int Commun Heat Mass Transf 35:385–394

    CAS  Google Scholar 

  63. Yang JR, Wong SC (2001) On the discrepancies between theoretical and experimental results for microgravity droplet evaporation. Int J Heat Mass Transf 44:4433–4443

    Google Scholar 

  64. Nomura H, Ujiie Y, Rath HJ, Sato J, Kono M (1996) Experimental study of high-pressure droplet evaporation using microgravity conditions. In: Proc. 26th Symp. on combustion, The Combustion Institute, Pittsburgh, PA, 1267–1273

  65. Zhang H, Raghavan V, Gogos G (2009) Subcritical and supercritical droplet evaporation within a zero gravity environment; on the discrepancies between theoretical and experimental results. Int J Spray Combust Dyn 1:317–338

    CAS  Google Scholar 

  66. Balaji B, Raghavan V, Ramamurthi K, Gogos G (2011) A numerical study of evaporation characteristics of spherical n-dodecane droplets in high pressure nitrogen environment. Phys Fluids 23(6):063601

    Google Scholar 

  67. Saroj R, Raghavan V, Gogos G (2018) Two-phase transient simulations of evaporation characteristics of two-component liquid fuel droplets at high pressures. Int J Multiph Flow. https://doi.org/10.1016/j.ijmultiphaseflow.2018.10.002

    Article  Google Scholar 

  68. Yang JR, Wong SC (2002) An experimental and theoretical study of the effects of heat conduction through the support fiber on the evaporation of a droplet in a weakly convective flow. Int J Heat Mass Transf 45:4589–4598

    CAS  Google Scholar 

  69. Polymeropoulos CE, Peskin RL (1969) Ignition and extinction of liquid fuel drops—numerical computations. Combust Flame 13:166–172

    CAS  Google Scholar 

  70. Dwyer HA, Sanders BR (1986) A detailed study of burning fuel droplets. In: Symposium (international) on combustion. 21, 633–639

  71. Dwyer HA, Sanders BR (1988) Calculations of unsteady reacting droplet flows. In: Symposium (international) on combustion. 22, 1923–1929

  72. Shaw BD (1990) Studies of influences of liquid phase species diffusion on spherically symmetric combustion of miscible binary droplets. Combust Flame 81:277–288

    CAS  Google Scholar 

  73. Cho SY, Choi MY, Dryer FL (1991) Extinction of a free methanol droplet in microgravity. In: Symposium (international) on combustion, 23, 1611–1617

  74. Chao BH, Law CK, T’ien JS (1991) Structure and extinction of diffusion flames with flame radiation. In: Symposium (international) on combustion, 23, 523–531

  75. Madooglu K, Karagozian AR (1993) Burning of a spherical fuel droplet in a uniform flow field with exact property variation. Combust Flame 94:321–329

    CAS  Google Scholar 

  76. Saitoh T, Yamazaki K, Viskanta R (1993) Effect of thermal radiation on transient combustion of a fuel droplet. AIAA J Thermophys Heat Trans 7:94–100

    CAS  Google Scholar 

  77. Huang LW, Chen CH (1995) Flame stabilization and blow off over a single droplet. Numer Heat Transf A 27:53–71

    Google Scholar 

  78. Jiang TL, Chen WS, Tsai MJ, Chiu HH (1995) A numerical investigation of multiple flame configurations in convective droplet gasification. Combust Flame 103:221–238

    CAS  Google Scholar 

  79. Marchese AJ, Dryer FL, Colantonio RO, Nayagam V (1996) Microgravity combustion of methanol and methanol/water droplets: drop tower experiments and model predictions. In: Symposium (international) on combustion, 26, 1209–1217

  80. Marchese AJ, Dryer FL (1996) The effect of liquid mass transport on the combustion and extinction of bicomponent droplets of methanol and water. Combust Flame 105:104–122

    CAS  Google Scholar 

  81. Lee J, Tomboulides AG, Orszag SA, Yetter RA, Dryer FL (1996) A transient two-dimensional chemically reactive flow model: fuel particle combustion in a nonquiescent environment. In: Symposium (international) on combustion, 26, 3059–3065

  82. Huang LW, Chen CH (1997) Droplet ignition in a high-temperature convective environment. Combust Flame 109:145–162

    CAS  Google Scholar 

  83. Marchese AJ, Dryer FL (1997) The effect of non-luminous thermal radiation in microgravity droplet combustion. Combust Sci Technol 124:371–402

    CAS  Google Scholar 

  84. Marchese AJ, Dryer FL, Colantonio RO (1998) Radiative effects in space-based methanol-water droplet combustion experiments. Proc Combust Inst 27:2627–2634

    Google Scholar 

  85. Dwyer HA, Shaw BD, Niazmand H (1998) Droplet/flame interactions including surface tension influences. In: Symposium (international) on combustion, 27, 1951–1957

  86. Balakrishnan P, Sundararajan T, Natarajan R (2000) Interference effects during burning of tandem porous spheres in mixed convective environment. AIAA J 38:1889–1898

    CAS  Google Scholar 

  87. Balakrishnan P, Sundararajan T, Natarajan R (2001) Combustion of a fuel droplet in a mixed convective environment. Combust Sci Tech 163:77–106

    CAS  Google Scholar 

  88. Kazakov A, Conley J, Dryer FL (2003) Detailed modeling of an isolated, ethanol droplet combustion under microgravity conditions. Combust Flame 134:301–314

    CAS  Google Scholar 

  89. Cuoci A, Mehl M, Buzzi-Ferraris G, Faravelli T, Manca D, Ranzi E (2005) Autoignition and burning rates of fuel droplets under microgravity. Combust Flame 143:211–226

    CAS  Google Scholar 

  90. Pope DN, Gogos G (2005) Numerical simulation of fuel droplet extinction due to forced convection. Combust Flame 142:89–106

    CAS  Google Scholar 

  91. Pope DN, Howard D, Lu K, Gogos G (2005) Combustion of moving droplets and suspended droplets: transient numerical results. J Thermophys Heat Transf 19:273–281

    CAS  Google Scholar 

  92. Raghavan V, Babu V, Sundararajan T, Natarajan R (2005) Flame shapes and burning rates of spherical fuel particles in a mixed convective environment. Int J Heat Mass Transf 48:5354–5370

    CAS  Google Scholar 

  93. Dietrich DL, Struk PM, Ikegami M, Xu G (2005) Single droplet combustion of decane in microgravity: experiments and numerical modelling. Combust Theor Model 9:569–585

    CAS  Google Scholar 

  94. Stauch R, Lipp S, Maas U, Rudman M (2006) Detailed numerical simulations of the autoignition of single n-heptane droplets in air. Combust Flame 145:533–542

    CAS  Google Scholar 

  95. Raghavan V, Pope DN, Howard D, Gogos G (2006) Surface tension effects during low-Reynolds-number methanol droplet combustion. Combust Flame 145:791–807

    CAS  Google Scholar 

  96. Raghavan V, Pope DN, Gogos G (2006) Effects of forced convection and surface tension during methanol droplet combustion. J Thermophys Heat Transf 20:787–798

    CAS  Google Scholar 

  97. Raghavan V, Pope DN, Gogos G (2008) Effect of non-luminous flame radiation during methanol droplet combustion. Combust Sci Technol 180:546–564

    CAS  Google Scholar 

  98. Raghavan V, Babu V, Sundararajan T (2009) Investigation of interaction between methanol fed tandem porous spheres burning in a mixed convective environment. Combust Theor Model 13:461–485

    CAS  Google Scholar 

  99. Jin Y, Shaw BD (2010) Computational modeling of n-heptane droplet combustion in air–diluent environments under reduced-gravity. Int J Heat Mass Transf 53:5782–5791

    CAS  Google Scholar 

  100. Sahu VK, Raghavan V (2011) A numerical study of steady diffusion flames established over ethanol fed porous spheres. Arch Combust 31:211–222

    CAS  Google Scholar 

  101. Sahu VK, Raghavan V, Pope DN, Gogos G (2011) Numerical modeling of steady burning characteristics of spherical ethanol particles in a spray environment. J Heat Transf 133:094502

    Google Scholar 

  102. Farouk T, Dryer FL (2012) Tethered methanol droplet combustion in carbon-dioxide enriched environment under microgravity conditions. Combust Flame 159:200–209

    CAS  Google Scholar 

  103. Farouk TI, Liu YC, Savas AJ, Avedisian CT, Dryer FL (2013) Sub-millimeter sized methyl butanoate droplet combustion: microgravity experiments and detailed numerical modeling. Proc Combust Inst 34:1609–1616

    CAS  Google Scholar 

  104. Awasthi I, Gogos G, Sundararajan T (2013) Effects of size on combustion of isolated methanol droplets. Combust Flame 160:1789–1802

    CAS  Google Scholar 

  105. Awasthi I, Pope DN, Gogos G (2014) Effects of the ambient temperature and initial diameter in droplet combustion. Combust Flame 161:1883–1899

    CAS  Google Scholar 

  106. Cuoci A, Frassoldati A, Faravelli T, Ranzi E (2015) Numerical modeling of auto-ignition of isolated fuel droplets in microgravity. Proc Combust Inst 35:1621–1627

    CAS  Google Scholar 

  107. Alam FE, Liu YC, Avedisian CT, Dryer FL, Farouk TI (2015) n-Butanol droplet combustion: numerical modeling and reduced gravity experiments. Proc Combust Inst 35:1693–1700

    CAS  Google Scholar 

  108. Cheng LY, Alam FE, Yuhao X, Dryer FL, Avedisian CT, Farouk TI (2016) Combustion characteristics of butanol isomers in multiphase droplet configurations. Combust Flame 169:216–228

    Google Scholar 

  109. Farouk TI, Dietrich D, Alam FE, Dryer FL (2017) Isolated n-decane droplet combustion—dual stage and single stage transition to “Cool Flame” droplet burning. Proc Combust Inst 36:2523–2530

    CAS  Google Scholar 

  110. Cuoci A, Saufi AE, Frassoldati A, Dietrich DL, Williams FA, Faravelli T (2017) Flame extinction and low-temperature combustion of isolated fuel droplets of n-alkanes. Proc Combust Inst 36:2531–2539

    CAS  Google Scholar 

  111. Ashna M, Rahimian MH, Fakhari A (2017) Extended lattice Boltzmann scheme for droplet combustion. Phys Rev E 95:053301

    Google Scholar 

  112. Giusti A, Sidey JAM, Borghesi G, Mastorakos E (2017) Simulations of droplet combustion under gas turbine conditions. Combust Flame 184:101–116

    CAS  Google Scholar 

  113. Giusti A, Sitte MP, Borghesi G, Mastorakos E (2018) Numerical investigation of kerosene single droplet ignition at high-altitude relight conditions. Fuel 225:663–670

    CAS  Google Scholar 

  114. Stagni A, Cuoci A, Frassoldati A, Ranzi E, Faravelli T (2018) Numerical investigation of soot formation from microgravity droplet combustion using heterogeneous chemistry. Combust Flame 189:393–406

    CAS  Google Scholar 

  115. Chen W, Gao R, Sun J, Lei Y, Fan X (2018) Modeling of an isolated liquid hydrogen droplet evaporation and combustion. Cryogenics 96:151–158

    CAS  Google Scholar 

  116. Irfan M, Muradoglu M (2018) A front tracking method for particle resolved simulation of vaporization and combustion of a fuel droplet. Comput Fluids 174:283–299

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasudevan Raghavan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raghavan, V. Numerical Modeling of Evaporation and Combustion of Isolated Liquid Fuel Droplets: a Review. J Indian Inst Sci 99, 5–23 (2019). https://doi.org/10.1007/s41745-019-0097-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-0097-5

Keywords

Navigation