Skip to main content

Advertisement

Log in

Conductive Polymers and Hydrogels for Neural Tissue Engineering

  • Review Article
  • Published:
Journal of the Indian Institute of Science Aims and scope

Abstract

Conventional approaches for the rescue and repair of the damaged neural tissue generally remain ineffective and do not provide functional recovery due to the difficulties in mimicking the complex anatomical functioning of the nervous system. Mimicking the natural microenvironment of the glial, neuronal, and stromal cells of the nervous system through the use of functional biomaterials-based platforms, and further combining these platforms with stem cell-based therapies has been considered as a promising alternative strategy for the efficient regeneration and functional recovery of the damaged neural tissue. The functionalities of biomaterial-based platforms provide 3D matrices with desired pore sizes, porosities, elasticities, and wettability along with various chemical, biological, and topographical cues that favor cellular attachment, growth, proliferation, directed alignment, and differentiation as well as proper nutrient flow for neural tissue regeneration. In addition, considering the inherent presence of electrical fields and synapses in the nervous system, application of electrical stimuli through conductive biomaterials-based platforms in the form of films, hydrogels, fibers, composites, and flexible electronic interfaces has also been used to enhance the nerve regeneration process. These platforms providing electrical stimuli have been particularly used for controlling neurite extension, directed migration of neuronal and glial cells, and differentiation of stem cells. In this review, we will summarize the recent advances in conductive biomaterials-based platforms and the use of electrical stimuli to control cellular behavior to enable neural regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Reproduced with permission from Huang et al.104 Copyright 2009 Wiley Periodicals, Inc.

Figure 2

Reproduced with permission from Yang et al.107 Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 3

Reproduced with permission from Xu et al.98 Copyright 2013 Elsevier Ltd.

Figure 4

Reproduced with permission from Wang et al.123 Copyright 2018 Elsevier B.V.

Figure 5

Reproduced with permission from Uz et al.94 Copyright 2019 American Chemical Society.

Similar content being viewed by others

References

  1. Gooch CL, Pracht E, Borenstein AR (2017) The burden of neurological disease in the United States: a summary report and call to action. Ann Neurol 81:479–484. https://doi.org/10.1002/ana.24897

    Article  Google Scholar 

  2. Krueger H, Noonan VK, Trenaman LM, Joshi P, Rivers CS (2013) The economic burden of traumatic spinal cord injury in Canada. Chronic Dis Inj Can 33:113–122

    CAS  Google Scholar 

  3. Feigin VL et al (2017) Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the global burden of disease study 2015. Lancet Neurol 16:877–897. https://doi.org/10.1016/S1474-4422(17)30299-5

    Article  Google Scholar 

  4. Furlan JC, Gulasingam S, Craven BC (2017) The health economics of the spinal cord injury or disease among veterans of war: a systematic review. J Spinal Cord Med 40:649–664. https://doi.org/10.1080/10790268.2017.1368267

    Article  Google Scholar 

  5. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol. https://doi.org/10.3389/fneur.2019.00282

    Article  Google Scholar 

  6. Chiono V, Tonda-Turo C (2015) Trends in the design of nerve guidance channels in peripheral nerve tissue engineering. Prog Neurobiol 131:87–104. https://doi.org/10.1016/j.pneurobio.2015.06.001

    Article  Google Scholar 

  7. Gu X (2015) Progress and perspectives of neural tissue engineering. Front Med 9:401–411. https://doi.org/10.1007/s11684-015-0415-x

    Article  Google Scholar 

  8. Gu X, Ding F, Williams DF (2014) Neural tissue engineering options for peripheral nerve regeneration. Biomaterials 35:6143–6156. https://doi.org/10.1016/j.biomaterials.2014.04.064

    Article  CAS  Google Scholar 

  9. Grinsell D, Keating CP (2014) Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. Biomed Res Int 2014:13. https://doi.org/10.1155/2014/698256

    Article  Google Scholar 

  10. Uz M, Altınkaya SA (2011) Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. LWT-Food Sci Technol 44:2302–2309

    Article  CAS  Google Scholar 

  11. Bunge RP (1994) The role of the Schwann cell in trophic support and regeneration. J Neurol 242:S19–S21

    Article  CAS  Google Scholar 

  12. Ide C (1996) Peripheral nerve regeneration. Neurosci Res 25:101–121

    Article  CAS  Google Scholar 

  13. Jessen KR, Mirsky R (1999) Schwann cells and their precursors emerge as major regulators of nerve development. Trends Neurosci 22:402–410

    Article  CAS  Google Scholar 

  14. Mahanthappa NK, Anton ES, Matthew WD (1996) Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J Neurosci 16:4673–4683

    Article  CAS  Google Scholar 

  15. Terenghi G (1999) Peripheral nerve regeneration and neurotrophic factors. J Anat 194:1–14. https://doi.org/10.1046/j.1469-7580.1999.19410001.x

    Article  CAS  Google Scholar 

  16. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594:3521–3531. https://doi.org/10.1113/jp270874

    Article  CAS  Google Scholar 

  17. Gao Y et al (2015) Nerve autografts and tissue-engineered materials for the repair of peripheral nerve injuries: a 5-year bibliometric analysis. Neural Regener Res 10:1003–1008. https://doi.org/10.4103/1673-5374.158369

    Article  Google Scholar 

  18. Hondred JA, Stromberg LR, Mosher CL, Claussen JC (2017) High-resolution graphene films for electrochemical sensing via inkjet maskless lithography. ACS Nano. https://doi.org/10.1021/acsnano.7b03554

    Article  Google Scholar 

  19. Guenard V, Kleitman N, Morrissey TK, Bunge RP, Aebischer P (1992) Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci 12:3310–3320

    Article  CAS  Google Scholar 

  20. Mosahebi A, Fuller P, Wiberg M, Terenghi G (2002) Effect of allogeneic Schwann cell transplantation on peripheral nerve regeneration. Exp Neurol 173:213–223. https://doi.org/10.1006/exnr.2001.7846

    Article  CAS  Google Scholar 

  21. Mosahebi A, Woodward B, Wiberg M, Martin R, Terenghi G (2001) Retroviral labeling of Schwann cells: in vitro characterization and in vivo transplantation to improve peripheral nerve regeneration. Glia 34:8–17

    Article  CAS  Google Scholar 

  22. Rodriguez FJ, Verdu E, Ceballos D, Navarro X (2000) Nerve guides seeded with autologous schwann cells improve nerve regeneration. Exp Neurol 161:571–584. https://doi.org/10.1006/exnr.1999.7315

    Article  CAS  Google Scholar 

  23. Rutkowski GE, Miller CA, Jeftinija S, Mallapragada SK (2004) Synergistic effects of micropatterned biodegradable conduits and Schwann cells on sciatic nerve regeneration. J Neural Eng 1:151–157. https://doi.org/10.1088/1741-2560/1/3/004

    Article  Google Scholar 

  24. Sandquist EJ et al (2016) Neural engineering. Springer, New York, pp 25–81

    Book  Google Scholar 

  25. Dezawa M, Takahashi I, Esaki M, Takano M, Sawada H (2001) Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur J Neurosci 14:1771–1776

    Article  CAS  Google Scholar 

  26. Jiang Y et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49. http://www.nature.com/nature/journal/v418/n6893/suppinfo/nature00870_S1.html. Accessed 22 July 2019

    Article  CAS  Google Scholar 

  27. Keilhoff G, Goihl A, Stang F, Wolf G, Fansa H (2006) Peripheral nerve tissue engineering: autologous Schwann cells vs. transdifferentiated mesenchymal stem cells. Tissue Eng 12:1451–1465. https://doi.org/10.1089/ten.2006.12.1451

    Article  CAS  Google Scholar 

  28. Pittenger MF et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  29. Gaertner A et al (2012) Use of poly(DL-lactide-epsilon-caprolactone) membranes and mesenchymal stem cells from the Wharton’s jelly of the umbilical cord for promoting nerve regeneration in axonotmesis: in vitro and in vivo analysis. Differentiation 84:355–365. https://doi.org/10.1016/j.diff.2012.10.001

    Article  CAS  Google Scholar 

  30. Ladak A, Olson J, Tredget EE, Gordon T (2011) Differentiation of mesenchymal stem cells to support peripheral nerve regeneration in a rat model. Exp Neurol 228:242–252. https://doi.org/10.1016/j.expneurol.2011.01.013

    Article  CAS  Google Scholar 

  31. Lee EJ et al (2012) Regeneration of peripheral nerves by transplanted sphere of human mesenchymal stem cells derived from embryonic stem cells. Biomaterials 33:7039–7046. https://doi.org/10.1016/j.biomaterials.2012.06.047

    Article  CAS  Google Scholar 

  32. Liu Y et al (2014) Conserved dopamine neurotrophic factor-transduced mesenchymal stem cells promote axon regeneration and functional recovery of injured sciatic nerve. PLoS ONE. https://doi.org/10.1371/journal.pone.0110993

    Article  Google Scholar 

  33. Tseng T-C, Hsu S-H (2014) Substrate-mediated nanoparticle/gene delivery to MSC spheroids and their applications in peripheral nerve regeneration. Biomaterials 35:2630–2641. https://doi.org/10.1016/j.biomaterials.2013.12.021

    Article  CAS  Google Scholar 

  34. Zhuang H et al (2016) Gelatin-methacrylamide gel loaded with microspheres to deliver GDNF in bilayer collagen conduit promoting sciatic nerve growth. Int J Nanomed 11:1383–1394. https://doi.org/10.2147/ijn.s96324

    Article  CAS  Google Scholar 

  35. Morrison SJ, Spradling AC (2008) Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132:598–611. https://doi.org/10.1016/j.cell.2008.01.038

    Article  CAS  Google Scholar 

  36. Scadden DT (2006) The stem-cell niche as an entity of action. Nature 441:1075–1079

    Article  CAS  Google Scholar 

  37. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science (New York, N.Y.) 324:1673–1677. https://doi.org/10.1126/science.1171643

    Article  CAS  Google Scholar 

  38. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  CAS  Google Scholar 

  39. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6:483–495

    Article  CAS  Google Scholar 

  40. Sun Y, Chen CS, Fu J (2012) Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 41:519–542. https://doi.org/10.1146/annurev-biophys-042910-155306

    Article  CAS  Google Scholar 

  41. Thorpe SD, Buckley CT, Steward AJ, Kelly DJ (2012) European Society of Biomechanics S.M. Perren Award 2012: the external mechanical environment can override the influence of local substrate in determining stem cell fate. J Biomech 45:2483–2492. https://doi.org/10.1016/j.jbiomech.2012.07.024

    Article  Google Scholar 

  42. Ariza CA et al (2010) The influence of electric fields on hippocampal neural progenitor cells. Stem Cell Rev 6:585–600. https://doi.org/10.1007/s12015-010-9171-0

    Article  Google Scholar 

  43. Ariza CA, Mallapragada SK (2010) Advanced biomaterials. Wiley, Hoboken, pp 613–642

    Book  Google Scholar 

  44. Pires F, Ferreira Q, Rodrigues CA, Morgado J, Ferreira FC (1850) Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochem Biophys Acta 1158–1168:2015. https://doi.org/10.1016/j.bbagen.2015.01.020

    Article  CAS  Google Scholar 

  45. Stewart E et al (2015) Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng Part C 21:385–393. https://doi.org/10.1089/ten.tec.2014.0338

    Article  CAS  Google Scholar 

  46. Koyama S, Haruyama T, Kobatake E, Aizawa M (1997) Electrically induced NGF production by astroglial cells. Nat Biotechnol 15:164–166. https://doi.org/10.1038/nbt0297-164

    Article  CAS  Google Scholar 

  47. Li L et al (2008) Direct-current electrical field guides neuronal stem/progenitor cell migration. Stem cells (Dayton, Ohio) 26:2193–2200. https://doi.org/10.1634/stemcells.2007-1022

    Article  CAS  Google Scholar 

  48. Yao L, Shanley L, McCaig C, Zhao M (2008) Small applied electric fields guide migration of hippocampal neurons. J Cell Physiol 216:527–535. https://doi.org/10.1002/jcp.21431

    Article  CAS  Google Scholar 

  49. Anderson M et al (2015) Peripheral nerve regeneration strategies: electrically stimulating polymer based nerve growth conduits. Crit Rev Biomed Eng 43:131–159. https://doi.org/10.1615/CritRevBiomedEng.2015014015

    Article  Google Scholar 

  50. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 94:8948–8953

    Article  CAS  Google Scholar 

  51. Willand MP, Nguyen MA, Borschel GH, Gordon T (2016) Electrical stimulation to promote peripheral nerve regeneration. Neurorehabilit Neural Repair 30:490–496. https://doi.org/10.1177/1545968315604399

    Article  Google Scholar 

  52. Ghasemi-Mobarakeh L et al (2011) Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J Tissue Eng Regener Med 5:e17–e35. https://doi.org/10.1002/term.383

    Article  CAS  Google Scholar 

  53. Le T-H, Kim Y, Yoon H (2017) Electrical and electrochemical properties of conducting polymers. Polymers. https://doi.org/10.3390/polym9040150

    Article  Google Scholar 

  54. Nezakati T, Seifalian A, Tan A, Seifalian AM (2018) Conductive polymers: opportunities and challenges in biomedical applications. Chem Rev 118:6766–6843. https://doi.org/10.1021/acs.chemrev.6b00275

    Article  CAS  Google Scholar 

  55. Tomczykowa M, Plonska-Brzezinska ME (2019) Conducting polymers, hydrogels and their composites: preparation, properties and bioapplications. Polymers. https://doi.org/10.3390/polym11020350

    Article  Google Scholar 

  56. Lin L et al (2013) In vivo study on the monoamine neurotransmitters and their metabolites change in the striatum of Parkinsonian rats by liquid chromatography with an acetylene black nanoparticles modified electrode. J Pharm Biomed Anal 72:74–79. https://doi.org/10.1016/j.jpba.2012.09.011

    Article  CAS  Google Scholar 

  57. Silva TA, Moraes FC, Janegitz BC, Fatibello-Filho O (2017) Electrochemical biosensors based on nanostructured carbon black: a review. J Nanomater 2017:14. https://doi.org/10.1155/2017/4571614

    Article  CAS  Google Scholar 

  58. Johansson E, Larsson S (2004) Electronic structure and mechanism for conductivity in thiophene oligomers and regioregular polymer. Synth Met 144:183–191. https://doi.org/10.1016/j.synthmet.2004.03.005

    Article  CAS  Google Scholar 

  59. Lee B, Seshadri V, Sotzing GA (2005) Water dispersible low band gap conductive polymer based on thieno[3,4-b]thiophene. Synth Met 152:177–180. https://doi.org/10.1016/j.synthmet.2005.07.231

    Article  CAS  Google Scholar 

  60. Roncali J, Garreau R, Delabouglise D, Garnier F, Lemaire M (1988) Recent developments in the synthesis and functionalization of conducting poly(thiophenes). Makromol Chem, Macromol Symp 20–21:601–614. https://doi.org/10.1002/masy.19880200159

    Article  Google Scholar 

  61. Balint R, Cassidy NJ, Cartmell SH (2014) Conductive polymers: towards a smart biomaterial for tissue engineering. Acta Biomater 10:2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015

    Article  CAS  Google Scholar 

  62. Guo B, Ma PX (2018) Conducting polymers for tissue engineering. Biomacromolecules 19:1764–1782. https://doi.org/10.1021/acs.biomac.8b00276

    Article  CAS  Google Scholar 

  63. Min JH, Patel M, Koh W-G (2018) Incorporation of conductive materials into hydrogels for tissue engineering applications. Polymers 10:1078. https://doi.org/10.3390/polym10101078

    Article  CAS  Google Scholar 

  64. Palza H, Zapata PA, Angulo-Pineda C (2019) Electroactive smart polymers for biomedical applications. Materials. https://doi.org/10.3390/ma12020277

    Article  Google Scholar 

  65. Inzelt G, Csahók E, Kertész V (2001) Preparation and characterisation of polyaniline electrode modified with diamino-methylbenzoate. Electrochim Acta 46:3955–3962. https://doi.org/10.1016/S0013-4686(01)00691-0

    Article  CAS  Google Scholar 

  66. Yoo JE et al (2007) Improving the electrical conductivity of polymer acid-doped polyaniline by controlling the template molecular weight. J Mater Chem 17:1268–1275. https://doi.org/10.1039/B618521E

    Article  CAS  Google Scholar 

  67. Guo B, Glavas L, Albertsson A-C (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog Polym Sci 38:1263–1286. https://doi.org/10.1016/j.progpolymsci.2013.06.003

    Article  CAS  Google Scholar 

  68. Harrison BS, Atala A (2007) Carbon nanotube applications for tissue engineering. Biomaterials 28:344–353. https://doi.org/10.1016/j.biomaterials.2006.07.044

    Article  CAS  Google Scholar 

  69. Uz M et al (2018) Advances in controlling differentiation of adult stem cells for peripheral nerve regeneration. Adv Healthcare Mater 7:1701046. https://doi.org/10.1002/adhm.201701046

    Article  CAS  Google Scholar 

  70. Gupta P, Rajput M, Singla N, Kumar V, Lahiri D (2016) Electric field and current assisted alignment of CNT inside polymer matrix and its effects on electrical and mechanical properties. Polymer 89:119–127. https://doi.org/10.1016/j.polymer.2016.02.025

    Article  CAS  Google Scholar 

  71. Gao W, Alemany LB, Ci L, Ajayan PM (2009) New insights into the structure and reduction of graphite oxide. Nat Chem 1: 403. https://doi.org/10.1038/nchem.281, https://www.nature.com/articles/nchem.281#supplementary-information. Accessed 22 July 2019

    Article  CAS  Google Scholar 

  72. Loh KP, Bao Q, Eda G, Chhowalla M (2010) Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2:1015. https://doi.org/10.1038/nchem.907

    Article  CAS  Google Scholar 

  73. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603–5613. https://doi.org/10.1021/ac900136z

    Article  CAS  Google Scholar 

  74. Chen GY, Pang DWP, Hwang SM, Tuan HY, Hu YC (2012) A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33:418–427. https://doi.org/10.1016/j.biomaterials.2011.09.071

    Article  CAS  Google Scholar 

  75. Guo W et al (2016) Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale 8:1897–1904. https://doi.org/10.1039/c5nr06602f

    Article  CAS  Google Scholar 

  76. Guo W et al (2016) Self-powered electrical stimulation for enhancing neural differentiation of mesenchymal stem cells on graphene–Poly(3,4-ethylenedioxythiophene) hybrid microfibers. ACS Nano 10:5086–5095. https://doi.org/10.1021/acsnano.6b00200

    Article  CAS  Google Scholar 

  77. Heo C et al (2011) The control of neural cell-to-cell interactions through non-contact electrical field stimulation using graphene electrodes. Biomaterials 32:19–27. https://doi.org/10.1016/j.biomaterials.2010.08.095

    Article  CAS  Google Scholar 

  78. Lee WC et al (2011) Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5:7334–7341. https://doi.org/10.1021/nn202190c

    Article  CAS  Google Scholar 

  79. Lee Y-J, Jang W, Im H, Sung J-S (2015) Extremely low frequency electromagnetic fields enhance neuronal differentiation of human mesenchymal stem cells on graphene-based substrates. Curr Appl Phys 15:S95–S102. https://doi.org/10.1016/j.cap.2015.04.017

    Article  Google Scholar 

  80. Nayak TR et al (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678. https://doi.org/10.1021/nn200500h

    Article  CAS  Google Scholar 

  81. Luo Y et al (2015) Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on graphene oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 7:6331–6339. https://doi.org/10.1021/acsami.5b00862

    Article  CAS  Google Scholar 

  82. Hao T et al (2016) Fullerene mediates proliferation and cardiomyogenic differentiation of adipose-derived stem cells via modulation of MAPK pathway and cardiac protein expression. Int J Nanomed 11:269–283. https://doi.org/10.2147/ijn.s95863

    Article  CAS  Google Scholar 

  83. Lee WC et al (2015) Cell-assembled graphene biocomposite for enhanced chondrogenic differentiation. Small 11:963–969. https://doi.org/10.1002/smll.201401635

    Article  CAS  Google Scholar 

  84. Kelkar DA, Chattopadhyay A (2006) Membrane interfacial localization of aromatic amino acids and membrane protein function. J Biosci 31:297–302. https://doi.org/10.1007/bf02704101

    Article  CAS  Google Scholar 

  85. Rajesh C, Majumder C, Mizuseki H, Kawazoe Y (2009) A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube. J Chem Phys 130:124911. https://doi.org/10.1063/1.3079096

    Article  CAS  Google Scholar 

  86. Lee DY, Khatun Z, Lee J-H, Lee Y-K, In I (2011) Blood compatible graphene/heparin conjugate through noncovalent chemistry. Biomacromolecules 12:336–341. https://doi.org/10.1021/bm101031a

    Article  CAS  Google Scholar 

  87. Samanta SK, Pal A, Bhattacharya S, Rao CNR (2010) Carbon nanotube reinforced supramolecular gels with electrically conducting, viscoelastic and near-infrared sensitive properties. J Mater Chem 20:6881–6890. https://doi.org/10.1039/C0JM00491J

    Article  CAS  Google Scholar 

  88. Wong KKH et al (2009) The effect of carbon nanotube aspect ratio and loading on the elastic modulus of electrospun poly(vinyl alcohol)-carbon nanotube hybrid fibers. Carbon 47:2571–2578. https://doi.org/10.1016/j.carbon.2009.05.006

    Article  CAS  Google Scholar 

  89. Shvedova A et al (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health Part A 66:1909–1926. https://doi.org/10.1080/713853956

    Article  CAS  Google Scholar 

  90. Yan L, Zhao F, Li S, Hu Z, Zhao Y (2011) Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 3:362–382. https://doi.org/10.1039/C0NR00647E

    Article  CAS  Google Scholar 

  91. Nuccitelli R (2003) Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat Prot Dosimetry 106:375–383. https://doi.org/10.1093/oxfordjournals.rpd.a006375

    Article  CAS  Google Scholar 

  92. Funk RHW (2015) Endogenous electric fields as guiding cue for cell migration. Front Physiol. https://doi.org/10.3389/fphys.2015.00143

    Article  Google Scholar 

  93. Robinson KR, Messerli M, Palmer A (1999) Endogenous electrical fields and embryonic development. In: Bersani F (ed) Electricity and magnetism in biology and medicine. Springer, pp 537–540

  94. Uz M, Donta M, Mededovic M, Sakaguchi DS, Mallapragada SK (2019) Development of gelatin and graphene-based nerve regeneration conduits using three-dimensional (3D) printing strategies for electrical transdifferentiation of mesenchymal stem cells. Ind Eng Chem Res 58:7421–7427. https://doi.org/10.1021/acs.iecr.8b05537

    Article  CAS  Google Scholar 

  95. Das SR et al (2017) Electrical differentiation of mesenchymal stem cells into Schwann-cell-like phenotypes using inkjet-printed graphene circuits. Adv Healthcare Mater. https://doi.org/10.1002/adhm.201601087

    Article  Google Scholar 

  96. Koppes AN et al (2014) Electrical stimulation of Schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng Part A 20:494–506. https://doi.org/10.1089/ten.tea.2013.0012

    Article  CAS  Google Scholar 

  97. Park J-E et al (2013) Electromagnetic fields induce neural differentiation of human bone marrow derived mesenchymal stem cells via ROS mediated EGFR activation. Neurochem Int 62:418–424. https://doi.org/10.1016/j.neuint.2013.02.002

    Article  CAS  Google Scholar 

  98. Xu H et al (2014) Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials 35:225–235. https://doi.org/10.1016/j.biomaterials.2013.10.002

    Article  CAS  Google Scholar 

  99. Yan Q et al (2011) Electro-acupuncture promotes differentiation of mesenchymal stem cells, regeneration of nerve fibers and partial functional recovery after spinal cord injury. Exp Toxicol Pathol 63:151–156. https://doi.org/10.1016/j.etp.2009.11.002

    Article  Google Scholar 

  100. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997) Stimulation of neurite outgrowth using an electrically conducting polymer. Proc Natl Acad Sci USA 94:8948–8953. https://doi.org/10.1073/pnas.94.17.8948

    Article  CAS  Google Scholar 

  101. Zhang Z et al (2007) electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. Artif Organs 31:13–22. https://doi.org/10.1111/j.1525-1594.2007.00335.x

    Article  CAS  Google Scholar 

  102. Huang L et al (2008) Synthesis of biodegradable and electroactive multiblock polylactide and aniline pentamer copolymer for tissue engineering applications. Biomacromol 9:850–858. https://doi.org/10.1021/bm7011828

    Article  CAS  Google Scholar 

  103. Lee JY, Lee J-W, Schmidt CE (2009) Neuroactive conducting scaffolds: nerve growth factor conjugation on active ester-functionalized polypyrrole. J R Soc Interface 6:801–810. https://doi.org/10.1098/rsif.2008.0403

    Article  CAS  Google Scholar 

  104. Huang J et al (2010) Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res Part A 93A:164–174. https://doi.org/10.1002/jbm.a.32511

    Article  CAS  Google Scholar 

  105. Guarino V, Alvarez-Perez MA, Borriello A, Napolitano T, Ambrosio L (2013) Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Adv Healthcare Mater 2:218–227. https://doi.org/10.1002/adhm.201200152

    Article  CAS  Google Scholar 

  106. Shi Z et al (2014) In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration. Angew Chem 126:5484–5488. https://doi.org/10.1002/ange.201402751

    Article  Google Scholar 

  107. Yang S et al (2016) Polypyrrole/alginate hybrid hydrogels: electrically conductive and soft biomaterials for human mesenchymal stem cell culture and potential neural tissue engineering applications. Macromol Biosci 16:1653–1661. https://doi.org/10.1002/mabi.201600148

    Article  CAS  Google Scholar 

  108. Bu Y et al (2018) A conductive sodium alginate and carboxymethyl chitosan hydrogel doped with polypyrrole for peripheral nerve regeneration. RSC Adv 8:10806–10817. https://doi.org/10.1039/c8ra01059e

    Article  CAS  Google Scholar 

  109. Jafarkhani M, Salehi Z, Nematian T (2018) Preparation and characterization of chitosan/graphene oxide composite hydrogels for nerve tissue engineering. Mater Today: Proc 5:15620–15628. https://doi.org/10.1016/j.matpr.2018.04.171

    Article  CAS  Google Scholar 

  110. Zhao Y et al (2018) Construction of polyacrylamide/graphene oxide/gelatin/sodium alginate composite hydrogel with bioactivity for promoting Schwann cells growth. J Biomed Mater Res Part A 106:1951–1964. https://doi.org/10.1002/jbm.a.36393

    Article  CAS  Google Scholar 

  111. Koppes AN et al (2016) Robust neurite extension following exogenous electrical stimulation within single walled carbon nanotube-composite hydrogels. Acta Biomater 39:34–43. https://doi.org/10.1016/j.actbio.2016.05.014

    Article  CAS  Google Scholar 

  112. Shin J et al (2017) Three-dimensional electroconductive hyaluronic acid hydrogels incorporated with carbon nanotubes and polypyrrole by catechol-mediated dispersion enhance neurogenesis of human neural stem cells. Biomacromolecules 18:3060–3072. https://doi.org/10.1021/acs.biomac.7b00568

    Article  CAS  Google Scholar 

  113. Imaninezhad M et al (2018) Directed and enhanced neurite outgrowth following exogenous electrical stimulation on carbon nanotube-hydrogel composites. J Neural Eng 15:056034. https://doi.org/10.1088/1741-2552/aad65b

    Article  Google Scholar 

  114. Liu XF et al (2017) Functionalized carbon nanotube and graphene oxide embedded electrically conductive hydrogel synergistically stimulates nerve cell differentiation. ACS Appl Mater Interfaces 9:14677–14690. https://doi.org/10.1021/acsami.7b02072

    Article  CAS  Google Scholar 

  115. Wang S et al (2017) Chitosan/gelatin porous scaffolds assembled with conductive poly(3,4-ethylenedioxythiophene) nanoparticles for neural tissue engineering. J Mater Chem B 5:4774–4788. https://doi.org/10.1039/C7TB00608J

    Article  CAS  Google Scholar 

  116. Thrivikraman G, Madras G, Basu B (2014) Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials 35:6219–6235. https://doi.org/10.1016/j.biomaterials.2014.04.018

    Article  CAS  Google Scholar 

  117. Prabhakaran MP, Ghasemi-Mobarakeh L, Jin G, Ramakrishna S (2011) Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J Biosci Bioeng 112:501–507. https://doi.org/10.1016/j.jbiosc.2011.07.010

    Article  CAS  Google Scholar 

  118. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009) Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–4335. https://doi.org/10.1016/j.biomaterials.2009.04.042

    Article  CAS  Google Scholar 

  119. Xie J et al (2009) Conductive core-sheath nanofibers and their potential application in neural tissue engineering. Adv Funct Mater 19:2312–2318. https://doi.org/10.1002/adfm.200801904

    Article  CAS  Google Scholar 

  120. Shafei S et al (2017) Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Res Chem Intermed 43:1235–1251. https://doi.org/10.1007/s11164-016-2695-4

    Article  CAS  Google Scholar 

  121. Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, Nasr-Esfahani MH, Ramakrishna S (2009) Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng Part A 15:3605–3619. https://doi.org/10.1089/ten.tea.2008.0689

    Article  CAS  Google Scholar 

  122. Wu Y, Feng S, Zan X, Lin Y, Wang Q (2015) Aligned electroactive TMV nanofibers as enabling scaffold for neural tissue engineering. Biomacromolecules 16:3466–3472. https://doi.org/10.1021/acs.biomac.5b00884

    Article  CAS  Google Scholar 

  123. Wang J, Tian L, Chen N, Ramakrishna S, Mo X (2018) The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Mater Sci Eng C 91:715–726. https://doi.org/10.1016/j.msec.2018.06.025

    Article  CAS  Google Scholar 

  124. Yow S-Z, Lim TH, Yim EKF, Lim CT, Leong KW (2011) A 3D electroactive polypyrrole-collagen fibrous scaffold for tissue engineering. Polymers. https://doi.org/10.3390/polym3010527

    Article  Google Scholar 

  125. Zhu W et al (2018) Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomed Nanotechnol Biol Med 14:2485–2494. https://doi.org/10.1016/j.nano.2017.03.018

    Article  CAS  Google Scholar 

  126. Uz M, Bulmus V, Altinkaya SA (2016) Effect of PEG grafting density and hydrodynamic volume on gold nanoparticle–cell interactions: an investigation on cell cycle, apoptosis, and DNA damage. Langmuir 32:5997–6009. https://doi.org/10.1021/acs.langmuir.6b01289

    Article  CAS  Google Scholar 

  127. Choi J-R, Kim S-M, Ryu R-H, Kim S-P, Sohn J-W (2018) Implantable neural probes for brain-machine interfaces—current developments and future prospects. Exp Neurobiol 27:453–471. https://doi.org/10.5607/en.2018.27.6.453

    Article  Google Scholar 

  128. Li D-F, Wang W, Wang H-J, Jia X-S, Wang J-Y (2008) Polyaniline films with nanostructure used as neural probe coating surfaces. Appl Surf Sci 255:581–584. https://doi.org/10.1016/j.apsusc.2008.06.150

    Article  CAS  Google Scholar 

  129. Di L et al (2011) Protein adsorption and peroxidation of rat retinas under stimulation of a neural probe coated with polyaniline. Acta Biomater 7:3738–3745. https://doi.org/10.1016/j.actbio.2011.06.009

    Article  CAS  Google Scholar 

  130. Guex AA et al (2015) Conducting polymer electrodes for auditory brainstem implants. J Mater Chem B 3:5021–5027. https://doi.org/10.1039/c5tb00099h

    Article  CAS  Google Scholar 

  131. Kotwal A, Schmidt CE (2001) Electrical stimulation alters protein adsorption and nerve cell interactions with electrically conducting biomaterials. Biomaterials 22:1055–1064. https://doi.org/10.1016/S0142-9612(00)00344-6

    Article  CAS  Google Scholar 

  132. Alegret N, Dominguez-Alfaro A, Mecerreyes D (2019) 3D scaffolds based on conductive polymers for biomedical applications. Biomacromolecules 20:73–89. https://doi.org/10.1021/acs.biomac.8b01382

    Article  CAS  Google Scholar 

  133. Gupta P et al (2019) Differential neural cell adhesion and neurite outgrowth on carbon nanotube and graphene reinforced polymeric scaffolds. Mater Sci Eng C 97:539–551. https://doi.org/10.1016/j.msec.2018.12.065

    Article  CAS  Google Scholar 

  134. Gupta P, Sharan S, Roy P, Lahiri D (2015) Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration. Carbon 95:715–724. https://doi.org/10.1016/j.carbon.2015.08.107

    Article  CAS  Google Scholar 

  135. Holzwarth JM, Ma PX (2011) 3D nanofibrous scaffolds for tissue engineering. J Mater Chem 21:10243–10251. https://doi.org/10.1039/C1JM10522A

    Article  CAS  Google Scholar 

  136. Blank M (2008) Protein and DNA reactions stimulated by electromagnetic fields. Electromagn Biol Med 27:3–23. https://doi.org/10.1080/15368370701878820

    Article  CAS  Google Scholar 

  137. Feng J-F et al (2012) Brief report: guided migration of neural stem cells derived from human embryonic stem cells by an electric field. Stem Cells (Dayton, Ohio) 30:349–355. https://doi.org/10.1002/stem.779

    Article  CAS  Google Scholar 

  138. Luo B et al (2014) Electrically induced brain-derived neurotrophic factor release from Schwann cells. J Neurosci Res 92:893–903. https://doi.org/10.1002/jnr.23365

    Article  CAS  Google Scholar 

  139. Sun S, Titushkin I, Cho M (2006) Regulation of mesenchymal stem cell adhesion and orientation in 3D collagen scaffold by electrical stimulus. Bioelectrochemistry (Amsterdam, Netherlands) 69:133–141. https://doi.org/10.1016/j.bioelechem.2005.11.007

    Article  CAS  Google Scholar 

  140. Kim T-H, Lee K-B, Choi J-W (2013) 3D graphene oxide-encapsulated gold nanoparticles to detect neural stem cell differentiation. Biomaterials 34:8660–8670. https://doi.org/10.1016/j.biomaterials.2013.07.101

    Article  CAS  Google Scholar 

  141. Park SY et al (2011) Enhanced differentiation of human neural stem cells into neurons on graphene. Adv Mater 23:H263–H267. https://doi.org/10.1002/adma.201101503

    Article  CAS  Google Scholar 

  142. Solanki A et al (2013) Axonal alignment and enhanced neuronal differentiation of neural stem cells on graphene-nanoparticle hybrid structures. Adv Mater 25:5477–5482. https://doi.org/10.1002/adma.201302219

    Article  CAS  Google Scholar 

  143. Henley J, Poo M-M (2004) Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14:320–330. https://doi.org/10.1016/j.tcb.2004.04.006

    Article  CAS  Google Scholar 

  144. Sheng L, Leshchyns’ka I, Sytnyk V (2013) Cell adhesion and intracellular calcium signaling in neurons. Cell Commun Signal 11:1–13. https://doi.org/10.1186/1478-811x-11-94

    Article  Google Scholar 

  145. Takeichi M, Okada TS (1972) Roles of magnesium and calcium ions in cell-to-substrate adhesion. Exp Cell Res 74:51–60. https://doi.org/10.1016/0014-4827(72)90480-6

    Article  CAS  Google Scholar 

  146. Hammerick KE, Longaker MT, Prinz FB (2010) In vitro effects of direct current electric fields on adipose-derived stromal cells. Biochem Biophys Res Commun 397:12–17. https://doi.org/10.1016/j.bbrc.2010.05.003

    Article  CAS  Google Scholar 

  147. Thrivikraman G, Madras G, Basu B (2014) Intermittent electrical stimuli for guidance of human mesenchymal stem cell lineage commitment towards neural-like cells on electroconductive substrates. Biomaterials 35:6219–6235. https://doi.org/10.1016/j.biomaterials.2014.04.018

    Article  CAS  Google Scholar 

  148. Kim H-J et al (2013) Extremely low-frequency electromagnetic fields induce neural differentiation in bone marrow derived mesenchymal stem cells. Exp Biol Med 238:923–931. https://doi.org/10.1177/1535370213497173

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge generous funding support by the Carol Vohs Johnson Chair and US Army Medical Research and Materiel Command under contract W81XWH-11-1-0700 in support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya K. Mallapragada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uz, M., Mallapragada, S.K. Conductive Polymers and Hydrogels for Neural Tissue Engineering. J Indian Inst Sci 99, 489–510 (2019). https://doi.org/10.1007/s41745-019-00126-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41745-019-00126-8

Keywords

Navigation