Microfluidic Mimic for Colloid Membrane Filtration: A Review

Abstract

This review provides an overview of the recent improvements of microfluidic membrane mimics. A special focus is given to the filtration of colloids in this device. Methods for on-chip membrane filtration have undergone significant development and improvement over the past two decades. Many efforts have been made to develop a single chip microfluidic platform that integrates the benefits of microfluidics and membrane science and technology. This review addresses the potential for microfluidic devices to serve as microfiltration membranes for separation purposes, as well as, micro-sized tools to study colloidal fouling phenomena at the pore scale.

This is a preview of subscription content, log in to check access.

Figure 1:

(Copyright 2011, reproduced with permission from Elsevier).

Figure 2:

(Copyright 2017, reproduced with permission from Nature Publishing Group).

Figure 3:

(Copyright 2010, reproduced with permission from Elsevier).

Figure 4:

(Copyright 2015, reproduced with permission from Springer Berlin Heidelberg).

Figure 5:

(Copyright 2000, reproduced with permission from American Chemical Society).

Figure 6:

(Copyright 2016, reproduced with permission from American Chemical Society).

Figure 7:

(Copyright 2016, reproduced with permission from American Chemical Society).

Figure 8:

(Copyright 2017, reproduced with permission from Royal Society of Chemistry).

References

  1. 1.

    Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation—millions suffer from preventable illnesses and die every year. Environ Sci Technol 41:17–24

    Article  Google Scholar 

  2. 2.

    Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Marĩas BJ, Mayes AM (2008) Science and technology for water purification in the coming decades. Nature 452:301–310

    CAS  Article  Google Scholar 

  3. 3.

    Sadrzadeh M, Hajinasiri J, Bhattacharjee S, Pernitsky D (2015) Nanofiltration of oil sands boiler feed water: effect of pH on water flux and organic and dissolved solid rejection. Sep Purif Technol 141:339–353

    CAS  Article  Google Scholar 

  4. 4.

    Le NL, Nunes SP (2016) Materials and membrane technologies for water and energy sustainability. Sustain Mater Technol 7:1–28

    CAS  Google Scholar 

  5. 5.

    Wiesner MR, Hackney J, Sethi S, Jacangelo JG, Jacangelo JG, Lafne J (1994) Cost estimates for membrane filtration and conventional treatment for membrane filtration and conventional treatment alternative for the removal of particles and organic material. Am Water Works Assoc 86:33–41

    CAS  Article  Google Scholar 

  6. 6.

    Baker RW (2012) Membrane technology and applications, 3rd edn. Wiley, West Sussex, pp 1–574

    Google Scholar 

  7. 7.

    Mulder M (1996) Basic principles of membrane technology, 2nd edn. Kluwer Academic Publishers, Dordrecht, pp 1–564

    Google Scholar 

  8. 8.

    Guo W, Ngo HH, Li J (2012) A mini-review on membrane fouling. Bioresour Technol 122:27–34

    CAS  Article  Google Scholar 

  9. 9.

    Al Mamun MA, Sadrzadeh M, Chatterjee R, Bhattacharjee S, De S (2015) Colloidal fouling of nanofiltration membranes: a novel transient electrokinetic model and experimental study. Chem Eng Sci 138:153–163

    CAS  Article  Google Scholar 

  10. 10.

    Chen V, Fane AG, Madaeni S, Wenten IG (1997) Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation. J Membr Sci 125:109–122

    CAS  Article  Google Scholar 

  11. 11.

    Mark D, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. NATO Sci Peace Secur Series A 39:305–376

    Google Scholar 

  12. 12.

    Haeberle S, Mark D, Von Stetten F, Zengerle R (2012) Microfluidic platforms for lab-on-a-chip applications. Microsyst Nanotechnol 9783642182:853–895

    Article  Google Scholar 

  13. 13.

    Salafi T, Zeming KK, Zhang Y (2017) Advancements in microfluidics for nanoparticle separation. Lab Chip 17:11–33

    CAS  Article  Google Scholar 

  14. 14.

    Alvankarian J, Majlis BY (2015) Tunable microfluidic devices for hydrodynamic fractionation of cells and beads: a review. Sensors (Switzerland) 15:29685–29701

    Article  Google Scholar 

  15. 15.

    Ng E, Chen K, Hang A, Syed A, Zhang JXJ (2016) Multi-dimensional nanostructures for microfluidic screening of biomarkers: from molecular separation to cancer cell detection. Ann Biomed Eng 44:847–862

    Article  Google Scholar 

  16. 16.

    Gruber P, Marques MPC, Szita N, Mayr T (2017) Integration and application of optical chemical sensors in microbioreactors. Lab Chip 17:2693–2712

    CAS  Article  Google Scholar 

  17. 17.

    Hugh Fan Z (2013) Chemical sensors and microfluidics. J Biosens Bioelectron 4:1–2

    Article  Google Scholar 

  18. 18.

    Anema SG (2009) The use of “lab-on-a-chip” microfluidic SDS electrophoresis technology for the separation and quantification of milk proteins. Int Dairy J 19:198–204

    CAS  Article  Google Scholar 

  19. 19.

    Dorfman KD, King SB, Olson DW, Thomas JDP, Tree DR (2013) Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem Rev 113:2584–2667

    CAS  Article  Google Scholar 

  20. 20.

    Tsai JH, Lin L (2002) A thermal-bubble-actuated micronozzle-diffuser pump. J Microelectromech Syst 11:665–671

    CAS  Article  Google Scholar 

  21. 21.

    Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chips: advances and trends. Biotechnol Adv 25:483–514

    CAS  Article  Google Scholar 

  22. 22.

    Ren K, Dai W, Zhou J, Su J, Wu H (2011) Whole-Teflon microfluidic chips. Proc Natl Acad Sci 108:8162–8166

    CAS  Article  Google Scholar 

  23. 23.

    Horsman KM, Bienvenue JM, Blasier KR, Landers JP (2007) Forensic DNA analysis on microfluidic devices: a review. J Forensic Sci 52:784–799

    CAS  Article  Google Scholar 

  24. 24.

    Khandurina J, McKnight TE, Jacobson SC, Waters LC, Foote RS, Ramsey JM (2000) Integrated system for rapid PCR-based DNA analysis in microfluidic devices. Anal Chem 72:2995–3000

    CAS  Article  Google Scholar 

  25. 25.

    Chen X, Shen J, Hu Z, Huo X (2016) Manufacturing methods and applications of membranes in microfluidics. Biomed Microdevices 18:104

    Article  CAS  Google Scholar 

  26. 26.

    de Jong J, Lammertink RGH, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6:1125

    Article  CAS  Google Scholar 

  27. 27.

    Chen X, Shen J (2017) Review of membranes in microfluidics. J Chem Technol Biotechnol 92:271–282

    CAS  Article  Google Scholar 

  28. 28.

    Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189

    CAS  Article  Google Scholar 

  29. 29.

    Chiu DT, de Mello AJ, Di Carlo D, Doyle PS, Hansen C, Maceiczyk RM, Wootton RCR (2017) Small but perfectly formed successes, challenges, and opportunities for microfluidics in the chemical and biological sciences. Chem 2:201–223

    CAS  Article  Google Scholar 

  30. 30.

    Zhang J, Yan S, Yuan D, Alici G, Nguyen N-T, Ebrahimi Warkiani M, Li W (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16:10–34

    CAS  Article  Google Scholar 

  31. 31.

    Ng JMK, Gitlin I, Stroock AD, Whitesides GM (2002) Components for integrated poly(dimethylsiloxane) microfluidic systems. Electrophoresis 23:3461–3473

    CAS  Article  Google Scholar 

  32. 32.

    Stroock AD, Whitesides GM (2002) Components for integrated poly (dimethylsiloxane) microfluidic systems. Electrophoresis 23:3461–3473

    Article  Google Scholar 

  33. 33.

    Mou L, Jiang X (2017) Materials for microfluidic immunoassays: a review. Adv Healthcare Mater 6:1–20

    Article  CAS  Google Scholar 

  34. 34.

    Bruus H (2008) Theoretical microfluidics. Physics 18:1–237

    Google Scholar 

  35. 35.

    Iliescu C, Taylor H, Avram M, Miao J, Franssila S (2012) A practical guide for the fabrication of microfluidic devices using glass and silicon. Biomicrofluidics 6:16505–1650516

    Article  CAS  Google Scholar 

  36. 36.

    Likos C (2001) Effective interactions in soft condensed matter physics. Phys Rep 348:267–439

    CAS  Article  Google Scholar 

  37. 37.

    Bacchin P, Marty A, Duru P, Meireles M, Aimar P (2011) Colloidal surface interactions and membrane fouling: Investigations at pore scale. Adv Coll Interface Sci 164:2–11

    CAS  Article  Google Scholar 

  38. 38.

    Yao KM, Habibian MT, O’Melia CR (1971) Water and waste water filtration: concepts and applications. Environ Sci Technol 5:1105–1112

    CAS  Article  Google Scholar 

  39. 39.

    Tufenkji N, Elimelech M (2005) Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21:841–852

    CAS  Article  Google Scholar 

  40. 40.

    Tufenkji N, Elimelech M (2004) Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20:10818–10828

    CAS  Article  Google Scholar 

  41. 41.

    Hoek EMV, Bhattacharjee S, Elimelech M (2003) Effect of membrane surface roughness on colloid-membrane DLVO interactions. Langmuir 19:4836–4847

    CAS  Article  Google Scholar 

  42. 42.

    Van den Broeck C, Lostak F, Lekkerkerker HNW (1981) The effect of direct interactions on Brownian diffusion. J Chem Phys 74:2006–2010

    Article  Google Scholar 

  43. 43.

    Cheng Y, Wang Y, Ma Z, Wang W, Ye X (2016) A bubble- and clogging-free microfluidic particle separation platform with multi-filtration. Lab Chip 16:4517–4526

    CAS  Article  Google Scholar 

  44. 44.

    Di H, Martin GJO, Dunstan DE (2017) A microfluidic system for studying particle deposition during ultrafiltration. J Membr Sci 532:68–75

    CAS  Article  Google Scholar 

  45. 45.

    Liang L-G, Kong M-Q, Zhou S, Sheng Y-F, Wang P, Yu T, Inci F, Kuo WP, Li L-J, Demirci U, Wang S (2017) An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep 7:46224

    Article  Google Scholar 

  46. 46.

    Ohira S-I, Toda K (2005) Micro gas analysis system for measurement of atmospheric hydrogen sulfide and sulfur dioxide. Lab Chip 5:1374–1379

    CAS  Article  Google Scholar 

  47. 47.

    Sticker D, Rothbauer M, Lechner S, Hehenberger M-T, Ertl P (2015) Multi-layered, membrane-integrated microfluidics based on replica molding of a thiolene epoxy thermoset for organ-on-a-chip applications. Lab Chip 15:4542–4554

    CAS  Article  Google Scholar 

  48. 48.

    Wei H, Chueh B, Wu H, Hall EW, Li C, Schirhagl R, Lin J-M, Zare RN (2011) Particle sorting using a porous membrane in a microfluidic device. Lab Chip 11:238–245

    CAS  Article  Google Scholar 

  49. 49.

    Anderson JR, Chiu DT, Jackman RJ, Chemiavskaya O, McDonald JC, Wu H, Whitesides SH, Whitesides GM (2000) Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping. Anal Chem 72:3158–3164

    CAS  Article  Google Scholar 

  50. 50.

    Chen L, Warkiani ME, Liu HB, Gong HQ (2010) Polymeric micro-filter manufactured by a dissolving mold technique. J Micromech Microeng 20:075005

    Article  CAS  Google Scholar 

  51. 51.

    Sundararajan N, Kim D, Berlin A (2005) Microfluidic operations using deformable polymer membranes fabricated by single layer soft lithography. Lab Chip 5:350–354

    CAS  Article  Google Scholar 

  52. 52.

    Xu J, Vaillant R, Attinger D (2010) Use of a porous membrane for gas bubble removal in microfluidic channels: physical mechanisms and design criteria. Microfluid Nanofluid 9:765–772

    CAS  Article  Google Scholar 

  53. 53.

    Chueh BH, Huh D, Kyrtsos CR, Houssin T, Futai N, Takayama S (2007) Leakage-free bonding of porous membranes into layered microfluidic array systems. Anal Chem 79:3504–3508

    CAS  Article  Google Scholar 

  54. 54.

    Pham MH, Barz DPJ (2017) Bonding Nafion® with polydimethylsiloxane: a versatile approach towards ion-exchange membrane microfluidic devices. J Membr Sci 537:310–314

    CAS  Article  Google Scholar 

  55. 55.

    Russo AP, Retterer ST, Spence AJ, Isaacson MS, Lepak LA, Spencer MG, Martin DL, MacColl R, Turner JN (2004) Direct casting of polymer membranes into microfluidic devices. Sep Sci Technol 39:2515–2530

    CAS  Article  Google Scholar 

  56. 56.

    Thorslund S, Klett O, Nikolajeff F, Markides K, Bergquist J (2006) A hybrid poly(dimethylsiloxane) microsystem for on-chip whole blood filtration optimized for steroid screening. Biomed Microdevice 8:73–79

    CAS  Article  Google Scholar 

  57. 57.

    Feng S, Nguyen MN, Inglis DW (2017) Microfluidic droplet extraction by hydrophilic membrane. Micromachines 8:1–8

    Article  Google Scholar 

  58. 58.

    Jiang Y, Lee CS (2001) On-line coupling of micro-enzyme reactor with micro-membrane chromatography for protein digestion, peptide separation, and protein identification using electrospray ionization mass spectrometry. J Chromatogr A 924:315–322

    CAS  Article  Google Scholar 

  59. 59.

    Gao J, Xu J, Locascio LE, Lee CS (2001) Integrated microfluidic system enabling protein digestion, peptide separation, and protein identification. Anal Chem 73:2648–2655

    CAS  Article  Google Scholar 

  60. 60.

    Cai ZX, Fang Q, Chen HW, Fang ZL (2006) A microfluidic chip based liquid–liquid extraction system with microporous membrane. Anal Chim Acta 556:151–156

    CAS  Article  Google Scholar 

  61. 61.

    Metz S, Trautmann C, Bertsch A, Renaud P (2004) Polyimide microfluidic devices with integrated nanoporous filtration areas manufactured by micromachining and ion track technology. J Micromech Microeng 14:324–331

    CAS  Article  Google Scholar 

  62. 62.

    Noblitt SD, Kraly JR, VanBuren JM, Hering SV, Collett JL, Henry CS (2007) Integrated membrane filters for minimizing hydrodynamic flow and filtering in microfluidic devices. Anal Chem 79:6249–6254

    CAS  Article  Google Scholar 

  63. 63.

    Wang PC, Gao J, Lee CS (2002) High-resolution chiral separation using microfluidics-based membrane chromatography. J Chromatogr A 942:115–122

    CAS  Article  Google Scholar 

  64. 64.

    Davies RT, Kim J, Jang SC, Choi E-J, Gho YS, Park J (2012) Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip 12:5202–5210

    CAS  Article  Google Scholar 

  65. 65.

    Hylton K, Mitra S (2008) A microfluidic hollow fiber membrane extractor for arsenic(V) detection. Anal Chim Acta 607:45–49

    CAS  Article  Google Scholar 

  66. 66.

    Paustian JS, Azevedo RN, Lundin STB, Gilkey MJ, Squires TM (2014) Microfluidic microdialysis: spatiotemporal control over solution microenvironments using integrated hydrogel membrane microwindows. Phys Rev X 3:1–13

    Google Scholar 

  67. 67.

    Choi E, Park J (2011) In-situ formation of hydrogel membranes and growth of colloidal crystals in microchannels using one step stamping. In: 15th international conference on miniaturized systems for chemistry and life sciences 2011, MicroTAS 2011, vol 1, pp 236–238

  68. 68.

    Ngene IS, Lammertink RGH, Wessling M, van der Meer W (2010) A microfluidic membrane chip for in situ fouling characterization. J Membr Sci 346:202–207

    CAS  Article  Google Scholar 

  69. 69.

    Galambos P, Zavadil K, Shul R, Willison CG, Miller S (1999) Silicon nitride membranes for filtration and separation. Microfluidic Devices Syst II(3877):273–283

    Article  Google Scholar 

  70. 70.

    Leïchlé T, Bourrier D (2015) Integration of lateral porous silicon membranes into planar microfluidics. Lab Chip 15:833–838

    Article  CAS  Google Scholar 

  71. 71.

    Chau JLH, Wan YSS, Gavriilidis A, Yeung KL (2002) Incorporating zeolites in microchemical systems. Chem Eng J 88:187–200

    CAS  Article  Google Scholar 

  72. 72.

    Vankelecom IFJ, Depre D, De Beukelaer S, Uytterhoeven JB (1995) Influence of zeolites in PDMS membranes. Pervaporation of water/alcohol mixtures. J Phys Chem 99:13193–13197

    CAS  Article  Google Scholar 

  73. 73.

    Wan YSS, Chau JLH, Gavriilidis A, Yeung KL (2001) Design and fabrication of zeolite-based microreactors and membrane microseparators. Microporous Mesoporous Mater 42:157–175

    CAS  Article  Google Scholar 

  74. 74.

    Toh CS, Kayes BM, Nemanick EJ, Lewis NS (2004) Fabrication of free-standing nanoscale alumina membranes with controllable pore aspect ratios. Nano Lett 4:767–770

    CAS  Article  Google Scholar 

  75. 75.

    Bin Liu Z, Zhang Y, Yu JJ, Mak AFT, Li Y, Yang M (2010) A microfluidic chip with poly(ethylene glycol) hydrogel microarray on nanoporous alumina membrane for cell patterning and drug testing. Sens Actuat B 143:776–783

    Article  CAS  Google Scholar 

  76. 76.

    Lu Y, Shi W, Qin J, Lin B (2010) Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by Wax printing. Anal Chem 82:329–335

    Article  CAS  Google Scholar 

  77. 77.

    Fan X, Jia C, Yang J, Li G, Mao H, Jin Q, Zhao J (2015) A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens Bioelectron 71:380–386

    CAS  Article  Google Scholar 

  78. 78.

    Li X, Chen W, Liu G, Lu W, Fu J (2014) Continuous-flow microfluidic blood cell sorting for unprocessed whole blood using surface-micromachined microfiltration membranes. Lab Chip 14:2565–2575

    CAS  Article  Google Scholar 

  79. 79.

    de Jong J, Ankoné B, Lammertink RGH, Wessling M (2005) New replication technique for the fabrication of thin polymeric microfluidic devices with tunable porosity. Lab Chip 5:1240–1247

    Article  CAS  Google Scholar 

  80. 80.

    Warkiani ME, Wicaksana F, Fane AG, Gong HQ (2015) Investigation of membrane fouling at the microscale using isopore filters. Microfluid Nanofluid 19:307–315

    Article  Google Scholar 

  81. 81.

    Chen W, Lam RHW, Fu J (2012) Photolithographic surface micromachining of polydimethylsiloxane (PDMS). Lab Chip 12:391–395

    CAS  Article  Google Scholar 

  82. 82.

    Chen X, Cui DF, Liu CC, Li H (2008) Microfluidic chip for blood cell separation and collection based on crossflow filtration. Sens Actuat B 130:216–221

    CAS  Article  Google Scholar 

  83. 83.

    Marty A, Causserand C, Roques C, Bacchin P (2014) Impact of tortuous flow on bacteria streamer development in microfluidic system during filtration. Biomicrofluidics 8:1–12

    Article  Google Scholar 

  84. 84.

    Robinson T, Kuhn P, Eyer K, Dittrich PS (2013) Microfluidic trapping of giant unilamellar vesicles to study transport through a membrane pore. Biomicrofluidics 7:044105

    CAS  Article  Google Scholar 

  85. 85.

    Yoon Y, Kim S, Lee J, Choi J, Kim RK, Lee SJ, Sul O, Lee SB (2016) Clogging-free microfluidics for continuous size-based separation of microparticles. Sci Rep 6:1–8

    Article  CAS  Google Scholar 

  86. 86.

    Biswas I, Ghosh R, Sadrzadeh M, Kumar A (2016) Nonlinear deformation and localized failure of bacterial streamers in creeping flows. Sci Rep 6:2–11

    Article  CAS  Google Scholar 

  87. 87.

    Alvankarian J, Bahadorimehr A, Yeop Majlis B (2013) A pillar-based microfilter for isolation of white blood cells on elastomeric substrate. Biomicrofluidics 7:1–16

    Article  CAS  Google Scholar 

  88. 88.

    Neeves KB, Diamond SL (2008) A membrane-based microfluidic device for controlling the flux of platelet agonists into flowing blood. Lab Chip 8:701–709

    CAS  Article  Google Scholar 

  89. 89.

    Bacchin P, Derekx Q, Veyret D, Glucina K, Moulin P (2014) Clogging of microporous channels networks: role of connectivity and tortuosity. Microfluid Nanofluid 17:85–96

    CAS  Article  Google Scholar 

  90. 90.

    Linkhorst J, Beckmann T, Go D, Kuehne AJC, Wessling M (2016) Microfluidic colloid filtration. Sci Rep 6:1–8

    Article  CAS  Google Scholar 

  91. 91.

    Devendra R, Drazer G (2014) Deterministic fractionation of binary suspensions moving past a line of microposts. Microfluid Nanofluid 17:519–526

    CAS  Article  Google Scholar 

  92. 92.

    Angelescu DE, Mercier B, Sless D, Schroetter R (2010) Microfluidic capillary separation and real-time spectroscopic analysis of specific components from multiphase mixtures. Anal Chem 82:2412–2420

    CAS  Article  Google Scholar 

  93. 93.

    Gossett DR, Weaver WM, MacH AJ, Hur SC, Tse HTK, Lee W, Amini H, Di Carlo D (2010) Label-free cell separation and sorting in microfluidic systems. Anal Bioanal Chem 397:3249–3267

    CAS  Article  Google Scholar 

  94. 94.

    Seo J, Lean MH, Kole A (2007) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91:033901

    Article  CAS  Google Scholar 

  95. 95.

    Shin S, Shardt O, Warren PB, Stone HA (2017) Membraneless water filtration using CO2. Nat Commun 8:1–6

    Article  CAS  Google Scholar 

  96. 96.

    Warkiani ME, Tay AKP, Guan G, Han J (2015) Membrane-less microfiltration using inertial microfluidics. Sci Rep 5:1–10

    Article  Google Scholar 

  97. 97.

    Kwon T, Prentice H, De Oliveira J, Madziva N, Warkiani ME, Hamel JFP, Han J (2017) Microfluidic cell retention device for perfusion of mammalian suspension culture. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  98. 98.

    SooHoo JR, Walker GM (2009) Microfluidic aqueous two phase system for leukocyte concentration from whole blood. Biomed Microdevice 11:323–329

    Article  Google Scholar 

  99. 99.

    Maruyama T, Matsushita H, Uchida JI, Kubota F, Kamiya N, Goto M (2004) Liquid membrane operations in a microfluidic device for separation of metal ions. Anal Chem 76:4495–4500

    CAS  Article  Google Scholar 

  100. 100.

    Sato K, Hibara A, Tokeshi M, Hisamoto H, Kitamori T (2003) Microchip-based chemical and biochemical analysis systems. Adv Drug Deliv Rev 55:379–391

    CAS  Article  Google Scholar 

  101. 101.

    Surmeian M, Slyadnev MN, Hisamoto H, Hibara A, Uchiyama K, Kitamori T (2002) Three-layer flow membrane system on a microchip for investigation of molecular transport. Anal Chem 74:2014–2020

    CAS  Article  Google Scholar 

  102. 102.

    Reviakine I, Brisson A (2000) Formation of supported phospholipid bilayers from unilamellar vesicles investigated by atomic force microscopy. Langmuir 16:1806–1815

    CAS  Article  Google Scholar 

  103. 103.

    Hirano-Iwata A, Aoto K, Oshima A, Taira T, Yamaguchi RT, Kimura Y, Niwano M (2010) Free-standing lipid bilayers in silicon chips-membrane stabilization based on microfabricated apertures with a nanometer-scale smoothness. Langmuir 26:1949–1952

    CAS  Article  Google Scholar 

  104. 104.

    Malmstadt N, Nash MA, Purnell RF, Schmidt JJ (2006) Automated formation of lipid-bilayer membranes in a microfluidic device. Nano Lett 6:1961–1965

    CAS  Article  Google Scholar 

  105. 105.

    Castellana ET, Cremer PS (2006) Solid supported lipid bilayers: from biophysical studies to sensor design. Surf Sci Rep 61:429–444

    CAS  Article  Google Scholar 

  106. 106.

    Ota S, Suzuki H, Takeuchi S (2011) Microfluidic lipid membrane formation on microchamber arrays. Lab Chip 11:2485–2487

    CAS  Article  Google Scholar 

  107. 107.

    Sandison ME, Morgan H (2005) Rapid fabrication of polymer microfluidic systems for the production of artificial lipid bilayers. J Micromech Microeng 15:S139–S144

    CAS  Article  Google Scholar 

  108. 108.

    Watanabe R, Soga N, Yamanaka T, Noji H (2014) High-throughput formation of lipid bilayer membrane arrays with an asymmetric lipid composition. Sci Rep 4:1–6

    CAS  Google Scholar 

  109. 109.

    Bacchin P, Aimar P, Sanchez V (1995) Model for colloidal fouling of membranes. AIChE J 41:368–376

    CAS  Article  Google Scholar 

  110. 110.

    Liu C, Thompson JA, Bau HH (2011) A membrane-based, high-efficiency, microfluidic debubbler. Lab Chip 11:1688–1693

    CAS  Article  Google Scholar 

  111. 111.

    Liang LG, Kong MQ, Zhou S, Sheng YF, Wang P, Yu T, Inci F, Kuo WP, Li LJ, Demirci U, Wang SQ (2017) An integrated double-filtration microfluidic device for isolation, enrichment and quantification of urinary extracellular vesicles for detection of bladder cancer. Sci Rep 7:1–10

    Article  CAS  Google Scholar 

  112. 112.

    Peterson DS (2005) Solid supports for micro analytical systems. Lab Chip 5:132–139

    CAS  Article  Google Scholar 

  113. 113.

    Tang CY, Chong TH, Fane AG (2011) Colloidal interactions and fouling of NF and RO membranes: a review. Adv Coll Interface Sci 164:126–143

    CAS  Article  Google Scholar 

  114. 114.

    Iritani E (2013) A review on modeling of pore-blocking behaviors of membranes during pressurized membrane filtration. Drying Technol 31:146–162

    Article  Google Scholar 

  115. 115.

    Sendekie ZB, Bacchin P (2016) Colloidal jamming dynamics in microchannel bottlenecks. Langmuir 32:1478–1488

    CAS  Article  Google Scholar 

  116. 116.

    Ramachandran V, Fogler HS (1998) Multilayer deposition of stable colloidal particles during flow within cylindrical pores. Langmuir 14:4435–4444

    CAS  Article  Google Scholar 

  117. 117.

    Sharp KV, Adrian RJ (2005) On flow-blocking particle structures in microtubes. Microfluid Nanofluid 1:376–380

    Article  Google Scholar 

  118. 118.

    Agbangla GC, Climent É, Bacchin P (2012) Experimental investigation of pore clogging by microparticles: evidence for a critical flux density of particle yielding arches and deposits. Sep Purif Technol 101:42–48

    CAS  Article  Google Scholar 

  119. 119.

    Bacchin P, Espinasse B, Bessiere Y, Fletcher DF, Aimar P (2006) Numerical simulation of colloidal dispersion filtration: description of critical flux and comparison with experimental results. Desalination 192:74–81

    CAS  Article  Google Scholar 

  120. 120.

    Derekx Q, Bacchin P, Veyret D, Glucina K, Moulin P (2012) Numerical and experimental study of fouling in microfluidic channels and microfiltration membranes. Procedia Eng 44:54–56

    Article  Google Scholar 

  121. 121.

    Johnson WP, Hilpert M (2013) Upscaling colloid transport and retention under unfavorable conditions: linking mass transfer to pore and grain topology. Water Resour Res 49:5328–5341

    Article  Google Scholar 

  122. 122.

    Tarabara VV, Koyuncu I, Wiesner MR (2004) Effect of hydrodynamics and solution ionic strength on permeate flux in cross-flow filtration: direct experimental observation of filter cake cross-sections. J Membr Sci 241:65–78

    CAS  Article  Google Scholar 

  123. 123.

    Zhang H, Gao J, Jiang T, Gao D, Zhang S, Li H, Yang F (2011) A novel approach to evaluate the permeability of cake layer during cross-flow filtration in the flocculants added membrane bioreactors. Bioresour Technol 102:11121–11131

    CAS  Article  Google Scholar 

  124. 124.

    Marty A, Roques C, Causserand C, Bacchin P (2012) Formation of bacterial streamers during filtration in microfluidic systems. Biofouling 28:551–562

    Article  Google Scholar 

  125. 125.

    Debnath N, Hassanpourfard M, Ghosh R, Trivedi J, Thundat T, Sadrzadeh M, Kumar A (2017) Abiotic streamers in a microfluidic system. Soft Matter 13:8698–8705

    CAS  Article  Google Scholar 

  126. 126.

    Karimi A, Karig D, Kumar A, Ardekani AM (2015) Interplay of physical mechanisms and biofilm processes: review of microfluidic methods. Lab Chip 15:23–42

    CAS  Article  Google Scholar 

  127. 127.

    Valiei A, Kumar A, Mukherjee PP, Liu Y, Thundat T (2012) A web of streamers: biofilm formation in a porous microfluidic device. Lab Chip 12:5133–5137

    CAS  Article  Google Scholar 

  128. 128.

    Hassanpourfard M, Nikakhtari Z, Ghosh R, Das S, Thundat T, Liu Y, Kumar A (2015) Bacterial floc mediated rapid streamer formation in creeping flows. Sci Rep 5:1–17

    Article  CAS  Google Scholar 

  129. 129.

    Hassanpourfard M, Ghosh R, Thundat T, Kumar A (2016) Dynamics of bacterial streamers induced clogging in microfluidic devices. Lab Chip 16:4091–4096

    CAS  Article  Google Scholar 

  130. 130.

    Drescher K, Shen Y, Bassler BL, Stone HA (2013) Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc Natl Acad Sci USA 110:4345–4350

    CAS  Article  Google Scholar 

  131. 131.

    Gori M, Simonelli MC, Giannitelli SM, Businaro L, Trombetta M, Rainer A (2016) Investigating nonalcoholic fatty liver disease in a liver-on-a-chip microfluidic device. PLoS ONE 11:1–15

    Google Scholar 

  132. 132.

    Jiang J, Zhao H, Shu W, Tian J, Huang Y, Song Y, Wang R, Li E, Slamon D, Hou D, Du X, Zhang L, Chen Y, Wang Q (2017) An integrated microfluidic device for rapid and high-sensitivity analysis of circulating tumor cells. Sci Rep 7:1–11

    Article  CAS  Google Scholar 

  133. 133.

    Aung A, Bhullar IS, Theprungsirikul J, Davey SK, Lim HL, Chiu YJ, Ma X, Dewan S, Lo YH, McCulloch A, Varghese S (2016) McCulloch, 3D cardiac µ tissues within a microfluidic device with real-time contractile stress readout. Lab Chip 16:153–162

    CAS  Article  Google Scholar 

  134. 134.

    Perestrelo AR, Águas ACP, Rainer A, Forte G (2015) Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors (Switzerland) 15:31142–31170

    Article  Google Scholar 

  135. 135.

    Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    CAS  Article  Google Scholar 

  136. 136.

    Srigunapalan S, Lam C, Wheeler AR, Simmons CA (2011) A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidics 5:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support for this work through the Natural Sciences and Engineering Research Council of Canada (NSERC), Natural Resources Canada (NRCan), Suncor Energy, Devon Canada, and ConocoPhillips, is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohtada Sadrzadeh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Debnath, N., Sadrzadeh, M. Microfluidic Mimic for Colloid Membrane Filtration: A Review. J Indian Inst Sci 98, 137–157 (2018). https://doi.org/10.1007/s41745-018-0071-7

Download citation

Keywords

  • Microfluidic Membrane
  • Colloidal Fouling
  • Microfluidic Devices
  • Cake Layer Formation
  • Permeation Flux