Skip to main content
Log in

Synthesis, Characterization and Application of Ferrous Iron-Embedded Schwertmannite for Cr(VI) Reduction–Adsorption from Aqueous Solutions

  • Research paper
  • Published:
International Journal of Environmental Research Aims and scope Submit manuscript

Abstract

Previous studies have demonstrated that schwertmannite (Sch) exhibits good adsorption performance for Cr(VI). In order to further enhance the ability to remove Cr(VI), this study prepared a novel composite (Fe(II)@Sch) by embedding ferrous iron (Fe(II)) on Sch. The adsorption performance of Cr(VI) on Fe(II)@Sch was investigated by batch adsorption experiments, and a possible removal mechanism was proposed through characterization analysis. The results showed that the optimal Fe/Sch ratio for Fe(II)@Sch preparation was 120 mmol/g. Fe(II)@Sch enabled efficient and rapid adsorption of Cr(VI). The maximum Cr(VI) adsorption capacity of Fe(II)@Sch was 4.17 mmol/g at pH 6.0, which was 69% higher when compared to Sch, and 81% of the maximum adsorption could be achieved within 1 min. The embedding of Fe(II) led to a decrease in the particle size and an increase in the specific surface area (SSA) of Sch, which could be considered favorable for adsorption. After four repeated cycles 93.3% of the original Cr(VI) adsorption capacity was still maintained. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy analysis showed that the interaction between Fe(II)@Sch and Cr(VI) followed an adsorption–reduction mechanism. The results demonstrated that Fe(II)@Sch could be used as an effective material for removing Cr(VI) from wastewater.

Graphical Abstract

Highlights

  • The optimal Fe/Sch ratio for Fe(II)@Sch preparation was 120 mmol/g.

  • Maximum Cr(VI) adsorption capacity of Fe(II)@Sch was 4.17 mmol/g at optimum pH 6.

  • Adsorption of Cr(VI) on Fe(II)@Sch reached 81% of maximum adsorption within 1 min.

  • Interaction between Fe(II)@Sch and Cr(VI) follows adsorption–reduction mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1

Similar content being viewed by others

Data availability

The data and materials used or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Behera A, Sahu S, Pahi S, Singh SK, Mahapatra B, Patel RK (2022) Polypyrrole modified zirconium (IV) phosphate nanocomposite: an effective adsorbent for Cr(VI) removal by adsorption–reduction mechanism. Mater Chem Phys 290:126540

    Article  CAS  Google Scholar 

  • Bolan N, Kunhikrishnan A, Thangarajan R, Kumpiene J, Park J, Makino T, Kirkham MB, Scheckel K (2014) Remediation of heavy metal(loid)s contaminated soils–to mobilize or to immobilize? J Hazard Mater 266:141–166

    Article  CAS  Google Scholar 

  • Buerge IJ, Hug SJ (1997) Kinetics and pH dependence of chromium(VI) reduction by iron(II). Environ Sci Technol 31(5):1426–1432

    Article  CAS  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2008) Schwertmannite transformation to goethite via the Fe(II) pathway: reaction rates and implications for iron–sulfide formation. Geochim Cosmochim Acta 72(18):4551–4564

    Article  CAS  Google Scholar 

  • Chen Y, Wang B, Xin J, Sun P, Wu D (2018) Adsorption behavior and mechanism of Cr(VI) by modified biochar derived from Enteromorpha prolifera. Ecotoxicol Environ Saf 164:440–447

    Article  CAS  Google Scholar 

  • Chen X, Song Z, Yuan B, Li X, Li S, Thang Nguyen T, Guo M, Guo Z (2022) Fluorescent carbon dots crosslinked cellulose Nanofibril/Chitosan interpenetrating hydrogel system for sensitive detection and efficient adsorption of Cu(II) and Cr(VI). Chem Eng J 430:133154

    Article  CAS  Google Scholar 

  • Choppala G, Karimian N, Burton ED (2022) An X-ray absorption spectroscopic study of the Fe(II)-induced transformation of Cr(VI)-substituted schwertmannite. J Hazard Mater 431:128580

    Article  CAS  Google Scholar 

  • Deng J, Liu Y, Li H, Huang Z, Qin X, Huang J, Zhang X, Li X, Lu Q (2022) A novel biochar-copolymer composite for rapid Cr(VI) removal: adsorption–reduction performance and mechanism. Sep Purif Technol 295(15):121275

    Article  CAS  Google Scholar 

  • Di Palma L, Gueye MT, Petrucci E (2015) Hexavalent chromium reduction in contaminated soil: a comparison between ferrous sulphate and nanoscale zero-valent iron. J Hazard Mater 281:70–76

    Article  Google Scholar 

  • Dong H, Deng J, Xie Y, Zhang C, Jiang Z, Cheng Y, Hou K, Zeng G (2017) Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution. J Hazard Mater 332:79–86

    Article  CAS  Google Scholar 

  • Dong FX, Liu Y, Zhou XH, Huang ST, Liang JY, Zhang WX, Guo ZW, Guo PR, Qian W, Kong LJ, Chu W, Diao ZH (2021) Simultaneous adsorption of Cr(VI) and phenol by biochar-based iron oxide composites in water: performance, kinetics and mechanism. J Hazard Mater 416:125930

    Article  CAS  Google Scholar 

  • Duranoglu D, Trochimczuk AW, Beker U (2012) Kinetics and thermodynamics of hexavalent chromium adsorption onto activated carbon derived from acrylonitrile-divinylbenzene copolymer. Chem Eng J 187(1):193–202

    Article  CAS  Google Scholar 

  • Eary LE, Rai D (1988) Chromate removal from aqueous wastes by reduction with ferrous ion. Environ Sci Technol 22(8):972–977

    Article  CAS  Google Scholar 

  • Fang Y, Wu X, Dai M, Lopez-Valdivieso A, Raza S, Ali I, Peng C, Li J, Naz I (2021) The sequestration of aqueous Cr(VI) by zero valent iron-based materials: from synthesis to practical application. J Clean Prod 312(20):127678

    Article  CAS  Google Scholar 

  • Gan M, Sun S, Zheng Z, Tang H, Sheng J, Zhu J, Liu X (2015a) Adsorption of Cr(VI) and Cu(II) by AlPO4 modified biosynthetic Schwertmannite. Appl Surf Sci 356(30):986–997

    Article  CAS  Google Scholar 

  • Gan M, Zheng Z, Sun S, Zhu J, Liu X (2015b) The influence of aluminum chloride on biosynthetic schwertmannite and Cu(II)/Cr(VI) adsorption. RSC Adv 5(114):94500–94512

    Article  CAS  Google Scholar 

  • Gao W, Yan J, Qian L, Han L, Chen M (2018) Surface catalyzing action of hematite (α-Fe2O3) on reduction of Cr(VI) to Cr(III) by citrate. Environ Technol Innov 9:82–90

    Article  Google Scholar 

  • Han L, Xue S, Zhao S, Yan J, Qian L, Chen M (2015) Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PLoS ONE 10(7):e0132067

    Article  Google Scholar 

  • Hui C, Zhang Y, Ni X, Cheng Q, Zhao Y, Zhao Y, Du L, Jiang H (2021) Interactions of iron-based nanoparticles with soil dissolved organic matter: adsorption, aging, and effects on hexavalent chromium removal. J Hazard Mater 406:124650

    Article  CAS  Google Scholar 

  • Ikemoto I, Ishii K, Kinoshita S, Kuroda H, Franco MAA, Thomas JM (1976) X-ray photoelectron spectroscopic studies of CrO2 and some related chromium compounds. J Solid State Chem 17(4):425–430

    Article  CAS  Google Scholar 

  • Jaiyeola OO, Annath H, Mangwandi C (2023) Synthesis and evaluation of a new CeO2@starch nanocomposite particles for efficient removal of toxic Cr(VI) ions. Energy Nexus 12:100244

    Article  CAS  Google Scholar 

  • Ju L, Jiao Z, Ge S, Zhan W, Liu Y, Ren Q, Liao Q, Yang Z, Wang Y (2022) Formation, stability and mobility of soluble Cr(III) during Cr(VI) reduction by Pannonibacter phragmitetus BB. Environ Technol Innov 27:102496

    Article  CAS  Google Scholar 

  • Kondalkar M, Fegade U, Inamuddin KS, Altalhi T, Suryawanshi KE, Patil AM (2022) Adsorption of Cr(VI) on ultrafine Al2O3-doped MnFe2O4 nanocomposite surface: experimental and theoretical study using double-layer modeling. J Phys Chem Solids 163:110544

    Article  CAS  Google Scholar 

  • Lemessa G, Chebude Y, Alemayehu E (2023) Adsorptive removal of Cr (VI) from wastewater using magnetite–diatomite nanocomposite. AQUA Water Infrastruct Ecosyst Soc 72:2239

    Article  Google Scholar 

  • Li T, Shen J, Huang S, Li N, Ye M (2014) Hydrothermal carbonization synthesis of a novel montmorillonite supported carbon nanosphere adsorbent for removal of Cr (VI) from waste water. Appl Clay Sci 93–94:48–55

    Article  Google Scholar 

  • Li Y, Wei YN, Huang SQ, Liu XS, Jin ZH, Zhang M, Qu JJ, Jin Y (2018) Biosorption of Cr(VI) onto Auricularia auricula dreg biochar modified by cationic surfactant: characteristics and mechanism. J Mol Liq 269:824–832

    Article  CAS  Google Scholar 

  • Li T, Wang Z, Zhang Z, Feng K, Liang J, Wang D, Zhou L (2021) Organic carbon modified Fe3O4/schwertmannite for heterogeneous Fenton reaction featuring synergistic in-situ H2O2 generation and activation. Sep Purif Technol 276:119344

    Article  CAS  Google Scholar 

  • Li R, Xian Y, Gao Y, Sun Y, Zhang D, Zhao J (2022) New insight into the mechanism of remediation of chromium containing soil by synergetic disposal of ferrous sulfate and digestate. Sci Total Environ 837:155539

    Article  CAS  Google Scholar 

  • Li M, Chen X, He J, Liu S, Tang Y, Wen X (2024) Porous NiCo-LDH microspheres obtained by freeze–drying for efficient dye and Cr(VI) adsorption. J Alloys Compd 976:173107

    Article  CAS  Google Scholar 

  • Liu B, Chen C, Li W, Liu H, Liu L, Deng S, Li Y (2022) Effective removal of Cr(VI) from aqueous solution through adsorption and reduction by magnetic S-doped Fe–Cu–La trimetallic oxides. J Environ Chem Eng 10(3):107433

    Article  CAS  Google Scholar 

  • Maurizio P, Luca DO, Luigi C, Millero FJ, Passino R (1998) The reduction of chromium (VI) by iron (II) in aqueous solutions. Geochim Cosmochim Acta 62(9):1509–1519

    Article  Google Scholar 

  • Meng X, Wang X, Zhang C, Yan S, Zheng G, Zhou L (2021) Co-adsorption of As(III) and phenanthrene by schwertmannite and Fenton-like regeneration of spent schwertmannite to realize phenanthrene degradation and As(III) oxidation. Environ Res 195:110855

    Article  CAS  Google Scholar 

  • Mortazavian S, An H, Chun D, Moon J (2018) Activated carbon impregnated by zero-valent iron nanoparticles (AC/nZVI) optimized for simultaneous adsorption and reduction of aqueous hexavalent chromium: material characterizations and kinetic studies. Chem Eng J 353:781–795

    Article  CAS  Google Scholar 

  • Qin G, Mcguire MJ, Blute NK, Seidel C, Fong L (2005) Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: a pilot-scale study. Environ Sci Technol 39(16):6321–6327

    Article  CAS  Google Scholar 

  • Regenspurg S, Brand A, Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim Cosmochim Acta 68(6):1185–1197

    Article  CAS  Google Scholar 

  • Rock ML, James BR, Helz GR (2001) Hydrogen peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils. Environ Sci Technol 35(20):4054–4059

    Article  CAS  Google Scholar 

  • Senturk HB, Ozdes D, Duran C (2010) Biosorption of Rhodamine 6G from aqueous solutions onto almond shell (Prunus dulcis) as a low cost biosorbent. Desalination 252:81–87

    Article  CAS  Google Scholar 

  • Shang J, Guo Y, He D, Qu W, Tang Y, Zhou L, Zhu R (2021) A novel graphene oxide-dicationic ionic liquid composite for Cr(VI) adsorption from aqueous solutions. J Hazard Mater 416:125706

    Article  CAS  Google Scholar 

  • Sinha R, Kumar R, Sharma P, Kant N, Shang J, Aminabhavi TM (2022) Removal of hexavalent chromium via biochar-based adsorbents: State-of-the-art, challenges, and future perspectives. J Environ Manag 317:115356

    Article  CAS  Google Scholar 

  • Siriwardane RV, Cook JM (1986) Interactions of SO2 with sodium deposited on CaO. J Colloid Interface Sci 114(2):525–535

    Article  CAS  Google Scholar 

  • Tang YQ, Liao XS, Zhang XL, Peng GP, Gao JT, Chen LH (2020) Enhanced adsorption of hexavalent chromium and the microbial effect on quartz sand modified with Al-layered double hydroxides. Sci Total Environ 762:143094

    Article  Google Scholar 

  • Tangsir S, Hafshejani LD, Lähde A, Maljanen M, Hooshmand A, Naseri AA, Moazed H, Jokiniemi J, Bhatnagar A (2016) Water defluoridation using Al2O3 nanoparticles synthesized by flame spray pyrolysis (FSP) method. Chem Eng J 288:198–206

    Article  CAS  Google Scholar 

  • Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem 87:1051–1069

    Article  CAS  Google Scholar 

  • Ulatowska J, Stala Ł, Polowczyk I (2021) Comparison of Cr(VI) adsorption using synthetic schwertmannite obtained by Fe3+ hydrolysis and Fe2+ oxidation: kinetics, isotherms and adsorption mechanism. Int J Mol Sci 22:8175

    Article  CAS  Google Scholar 

  • Uslu H, Datta D, Azizian S (2016) Separation of chromium (VI) from its liquid solution using new montmorillonite supported with amine based solvent. J Mol Liq 215:449–453

    Article  CAS  Google Scholar 

  • Uzum C, Shahwan T, Eroglu A, Hallam K, Scott T, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43(2):172–181

    Article  CAS  Google Scholar 

  • Wan Z, Cho D-W, Tsang DCW, Li M, Sun T, Verpoort F (2019) Concurrent adsorption and micro-electrolysis of Cr(VI) by nanoscale zerovalent iron/biochar/Ca-alginate composite. Environ Pollut 247:410–420

    Article  CAS  Google Scholar 

  • Wang G, Wang S, Sun W, Sun Z, Zheng S (2017) Synthesis of a novel illite@carbon nanocomposite adsorbent for removal of Cr(VI) from wastewater. J Environ Sci 57:62–71

    Article  CAS  Google Scholar 

  • Wang ZW, Wang YH, Cao S, Liu SH, Chen ZM, Chen JF, Chen Y, Fu JW (2019) Fabrication of core@shell structural Fe-Fe2O3@PHCP nanochains with high saturation magnetization and abundant amino groups for hexavalent chromium adsorption and reduction. J Hazard Mater 384:121483

    Article  Google Scholar 

  • Wang Y, Gao M, Huang W, Wang T, Liu Y (2020) Effects of extreme pH conditions on the stability of As(V)-bearing schwertmannite. Chemosphere 251:126427

    Article  CAS  Google Scholar 

  • Xie Y, Lu G, Tao X, Wen Z, Dang Z (2021) A collaborative strategy for elevated reduction and immobilization of Cr(VI) using nano zero valent iron assisted by schwertmannite: Removal performance and mechanism. J Hazard Mater 422:126952

    Article  Google Scholar 

  • Xu J, Avellan A, Li H, Liu X, Noel V, Lou Z, Wang Y, Kaegi R, Henkelman G, Lowry GV (2020) Sulfur loading and speciation control the hydrophobicity, electron transfer, reactivity, and selectivity of sulfidized nanoscale zerovalent iron. Adv Mater 32:e1906910

    Article  Google Scholar 

  • Zeng X, Wang Y, He X, Liu C, Wang X, Wang X (2021) Enhanced removal of Cr(VI) by reductive sorption with surface-modified Ti3C2Tx MXene nanocomposites. J Environ Chem Eng 9(5):106203

    Article  CAS  Google Scholar 

  • Zhang Y, Li Y, Li J, Sheng G, Zhang Y, Zheng X (2012) Enhanced Cr(VI) removal by using the mixture of pillared bentonite and zero-valent iron. Chem Eng J 185–186:243–249

    Article  Google Scholar 

  • Zhang TT, Xue Q, Li JS, Wei ML, Wang P, Liu L, Wan Y (2018) Effect of ferrous sulfate dosage and soil particle size on leachability and species distribution of chromium in hexavalent chromium-contaminated soil stabilized by ferrous sulfate. Environ Prog Sustain Energy 38(2):500–507

    Article  Google Scholar 

  • Zhang Z, Guo GL, Li XT, Zhao QC, Bi X, Wu KN, Chen HH (2019) Effects of hydrogen-peroxide supply rate on schwertmannite microstructure and chromium(VI) adsorption performance. J Hazard Mater 367:520–528

    Article  CAS  Google Scholar 

  • Zhao N, Zhao CF, Lv YZ, Zhang WF, Du YG, Hao ZP, Zhang J (2017) Adsorption and coadsorption mechanisms of Cr(VI) and organic contaminants on H3PO4 treated biochar. Chemosphere 186:422–429

    Article  CAS  Google Scholar 

  • Zhou L, Chi T, Zhou Y, Lv J, Chen H, Sun S, Zhu X, Wu H, Hu X (2022) Efficient removal of hexavalent chromium through adsorption–reduction–adsorption pathway by iron–clay biochar composite prepared from Populus nigra. Sep Purif Technol 285:120386

    Article  CAS  Google Scholar 

  • Zou H, Zhao J, He F, Zhong Z, Huang J, Zheng Y, Zhang Y, Yang Y, Yu F, Bashir MA, Gao B (2021) Ball milling biochar iron oxide composites for the removal of chromium (Cr(VI)) from water: performance and mechanisms. J Hazard Mater 413:125

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (41907131 and 52000181) and the Fundamental Research Funds for the Central Universities, CUGB (590122117).

Author information

Authors and Affiliations

Authors

Contributions

ZZ: Conceptualization, Methodology, Writing—review & editing. ZS: Conceptualization, Experiments, Data methodology, Writing—original draft. CL: Experiments, Data methodology, Data analysis. HZ: Conceptualization. LY: Data methodology, Data recording. HJ: Data analysis, Data curation. HH: Data analysis, Writing editing; XZ: Data analysis.

Corresponding author

Correspondence to Zhuo Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Song, Z., Luo, C. et al. Synthesis, Characterization and Application of Ferrous Iron-Embedded Schwertmannite for Cr(VI) Reduction–Adsorption from Aqueous Solutions. Int J Environ Res 18, 16 (2024). https://doi.org/10.1007/s41742-024-00570-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41742-024-00570-0

Keyword

Navigation