Skip to main content
Log in

Assay of Biomarkers for Alzheimer’s Disease by Surface Plasmon Resonance

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is one of the neurodegenerative diseases characterized by cognitive dysfunction and behavioral impairment. Early diagnosis of AD serves as a viable means to avoid the onset and progression of the disease. Due to the remarkably lower expression levels of AD biomarkers in cerebrospinal fluids and serum samples, sensitive and specific analytical methods are highly demanded. Surface plasmon resonance (SPR) is ultrasensitive to the refractive index or thickness change at the metal surface, which enables real-time and label-free assay of target biomolecules. In this review, we summarize the advances on assay of AD biomarkers including amyloid beta, tau protein, apoE proteins and apoE genes, and BACE1 by SPR, with emphasis on the analytical performances concerning anti-fouling and signal amplification strategies and real sample applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data supporting the finding reported herein are available on reasonalbe request from the corresponding author.

References

  1. Pradhan R, Singh AK, Kumar P, Bajpai S, Pathak M, Chatterjee P, Dwivedi S, Dey AB, Dey S. Blood circulatory level of seven sirtuins in Alzheimer’s disease: potent biomarker based on translational research. Mol Neurobiol. 2022;59(3):1440–51.

    Article  CAS  PubMed  Google Scholar 

  2. Scarano S, Lisi S, Ravelet C, Peyrin E, Minunni M. Detecting Alzheimer’s disease biomarkers: from antibodies to new bio-mimetic receptors and their application to established and emerging bioanalytical platforms—a critical review. Anal Chim Acta. 2016;940:21–37.

    Article  CAS  PubMed  Google Scholar 

  3. Zeng Y, Huang Z, Liu Y, Xu T. Printed biosensors for the detection of Alzheimer’s disease based on blood biomarkers. J Anal Test. 2023. https://doi.org/10.1007/s41664-023-00277-9.

    Article  Google Scholar 

  4. Kim S, Wark AW, Lee HJ. Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance. Anal Chem. 2016;88(15):7793–9.

    Article  CAS  PubMed  Google Scholar 

  5. Špringer T, Hemmerová E, Finocchiaro G, Krištofiková Z, Vyhnálek M, Homola J. Surface plasmon resonance biosensor for the detection of tau-amyloid β complex. Sens Actuators B. 2020;316: 128146.

    Article  Google Scholar 

  6. Kim K, Lee CH, Park CB. Chemical sensing platforms for detecting trace-level Alzheimer’s core biomarkers. Chem Soc Rev. 2020;49(15):5446–72.

    Article  CAS  PubMed  Google Scholar 

  7. Song L, Lachno DR, Hanlon D, Shepro A, Jeromin A, Gemani D, Talbot JA, Racke MM, Dage JL, Dean RA. A digital enzyme-linked immunosorbent assay for ultrasensitive measurement of amyloid-β 1–42 peptide in human plasma with utility for studies of Alzheimer’s disease therapeutics. Alzheimer’s Res Ther. 2016;8(1):58.

    Article  Google Scholar 

  8. Wu L, Ji H, Sun H, Ding C, Ren J, Qu X. Label-free ratiometric electrochemical detection of the mutated apolipoprotein E gene associated with Alzheimer’s disease. Chem Commun. 2016;52(81):12080–3.

    Article  CAS  Google Scholar 

  9. Fernández-Cabada T, Ramos-Gómez M. A novel contrast agent based on magnetic nanoparticles for cholesterol detection as Alzheimer’s disease biomarker. Nanoscale Res Lett. 2019;14(1):36.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ren X, Yan J, Wu D, Wei Q, Wan Y. Nanobody-based apolipoprotein E immunosensor for point-of-care testing. ACS Sens. 2017;2(9):1267–71.

    Article  CAS  PubMed  Google Scholar 

  11. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc. 2000;122(38):9071–7.

    Article  CAS  Google Scholar 

  12. Liu B, Liu X, Shi S, Huang R, Su R, Qi W, He Z. Design and mechanisms of antifouling materials for surface plasmon resonance sensors. Acta Biomater. 2016;40:100–18.

    Article  CAS  PubMed  Google Scholar 

  13. Wang Q, Ren Z-H, Zhao W-M, Wang L, Yan X, Zhu A-S, Qiu F-M, Zhang K-K. Research advances on surface plasmon resonance biosensors. Nanoscale. 2022;14(3):564–91.

    Article  CAS  PubMed  Google Scholar 

  14. Homola J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev. 2008;108:462–93.

    Article  CAS  PubMed  Google Scholar 

  15. Diao W, Tang M, Ding S, Li X, Cheng W, Mo F, Yan X, Ma H, Yan Y. Highly sensitive surface plasmon resonance biosensor for the detection of HIV-related DNA based on dynamic and structural DNA nanodevices. Biosens Bioelectron. 2018;100:228–34.

    Article  CAS  PubMed  Google Scholar 

  16. Ravindran N, Kumar S, Yashini M, Rajeshwari S, Manmathi CA, Thirunavookarasu NS, Sunil CK. Recent advances in surface plasmon resonance (SPR) biosensors for food analysis: a review. Crit Rev Food Sci Nutr. 2023;63(8):1055–77.

    Article  CAS  PubMed  Google Scholar 

  17. Yi X, Feng C, Hu S, Li H, Wang J. Surface plasmon resonance biosensors for simultaneous monitoring of amyloid-beta oligomers and fibrils and screening of select modulators. Analyst. 2016;141(1):331–6.

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, He Y, Liu L, Wang J, Yi X. DNA walking system integrated with enzymatic cleavage reaction for sensitive surface plasmon resonance detection of miRNA. Sci Rep. 2022;12(1): 12093.

    Google Scholar 

  19. He P, Liu L, Qiao W, Zhang S. Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. Chem Commun. 2014;50(12):1481–4.

    Article  CAS  Google Scholar 

  20. Yi X, Zhang Y, Gong M, Yu X, Darabedian N, Zheng J, Zhou F. Ca2+ interacts with Glu-22 of Aβ(1–42) and phospholipid bilayers to accelerate the Aβ(1–42) aggregation below the critical micelle concentration. Biochemistry. 2015;54(41):6323–32.

    Article  CAS  PubMed  Google Scholar 

  21. Riedel T, RiedelovaReicheltova Z, Majek P, Rodriguez Emmenegger C, Houska M, Dyr JE, Brynda E. Complete identification of proteins responsible for human blood plasma fouling on poly(ethylene glycol)-based surfaces. Langmuir. 2013;29(10):3388–97.

    Article  CAS  PubMed  Google Scholar 

  22. Vaisocherova-Lisalova H, Surman F, Visova I, Vala M, Springer T, Ermini ML, Sipova H, Sedivak P, Houska M, Riedel T, Pop-Georgievski O, Brynda E, Homola J. Copolymer brush-based ultralow-fouling biorecognition surface platform for food safety. Anal Chem. 2016;88(21):10533–9.

    Article  CAS  PubMed  Google Scholar 

  23. Lisalova H, Brynda E, Houska M, Visova I, Mrkvova K, Song XC, Gedeonova E, Surman F, Riedel T, Pop-Georgievski O, Homola J. Ultralow-fouling behavior of biorecognition coatings based on carboxy-functional brushes of zwitterionic homo- and copolymers in blood plasma: functionalization matters. Anal Chem. 2017;89(6):3524–31.

    Article  CAS  PubMed  Google Scholar 

  24. Chiang C-Y, Chen C-H, Wu C-W. Fiber optic localized surface plasmon resonance sensor based on carboxymethylated dextran modified gold nanoparticles surface for high mobility group Box 1 (HMGB1) analysis. Biosensors. 2023;13(5):522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D’Agata R, Bellassai N, Giuffrida MC, Aura AM, Petri C, Kögler P, Vecchio G, Jonas U, Spoto G. A new ultralow fouling surface for the analysis of human plasma samples with surface plasmon resonance. Talanta. 2021;221: 121483.

    Article  PubMed  Google Scholar 

  26. Xia Y, Wu L, Hu Y, He Y, Cao Z, Zhu X, Yi X, Wang J. Sensitive surface plasmon resonance detection of methyltransferase activity and screening of its inhibitors amplified by p53 protein bound to methylation-specific ds-DNA consensus sites. Biosens Bioelectron. 2019;126:269–74.

    Article  CAS  PubMed  Google Scholar 

  27. Liu X, Huang R, Su R, Qi W, Wang L, He Z. Grafting hyaluronic acid onto gold surface to achieve low protein fouling in surface plasmon resonance biosensors. ACS Appl Mater Interfaces. 2014;6(15):13034–42.

    Article  CAS  PubMed  Google Scholar 

  28. Nie W, Wang Q, Zou L, Zheng Y, Liu X, Yang X, Wang K. Low-fouling surface plasmon resonance sensor for highly sensitive detection of microRNA in a complex matrix based on the DNA tetrahedron. Anal Chem. 2018;90(21):12584–91.

    Article  CAS  PubMed  Google Scholar 

  29. Liu L, Chang Y, Ji X, Chen J, Zhang M, Yang S. Surface-tethered electrochemical biosensor for telomerase detection by integration of homogeneous extension and hybridization reactions. Talanta. 2023;253: 123597.

    Article  CAS  PubMed  Google Scholar 

  30. Xia N, Wu D, Sun T, Wang Y, Ren X, Zhao F, Liu L, Yi X. Magnetic bead-based electrochemical and colorimetric methods for the detection of poly(ADP-ribose) polymerase-1 with boronic acid derivatives as the signal probes. Sens Actuators B. 2021;327: 128913.

    Article  CAS  Google Scholar 

  31. Shen J, Jiang X, Xu L, Ge Z, Li Q, Song B, Wang L, Song S. Poly-adenine-engineered gold nanogaps for SERS nanostructures. ACS Appl Mater Interfaces. 2019;2(6):3501–9.

    CAS  Google Scholar 

  32. Xia N, Huang Y, Zhao Y, Wang F, Liu L, Sun Z. Electrochemical biosensors by in situ dissolution of self-assembled nanolabels into small monomers on electrode surface. Sens Actuators B. 2020;325: 128777.

    Article  CAS  Google Scholar 

  33. Ding X, Yan Y, Li S, Zhang Y, Cheng W, Cheng Q, Ding S. Surface plasmon resonance biosensor for highly sensitive detection of microRNA based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal Chim Acta. 2015;874:59–65.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang D, Yan Y, Cheng W, Zhang W, Li Y, Ju H, Ding S. Streptavidin-enhanced surface plasmon resonance biosensor for highly sensitive and specific detection of microRNA. Microchim Acta. 2013;180:397–403.

    Article  CAS  Google Scholar 

  35. Xia N, Huang Y, Cui Z, Liu S, Deng D, Liu L, Wang J. Impedimetric biosensor for assay of caspase-3 activity and evaluation of cell apoptosis using self-assembled biotin–phenylalanine network as signal enhancer. Sens Actuators B. 2020;320: 128436.

    Article  CAS  Google Scholar 

  36. Liu L, Deng D, Wu D, Hou W, Wang L, Li N, Sun Z. Duplex-specific nuclease-based electrochemical biosensor for the detection of microRNAs by conversion of homogeneous assay into surface-tethered electrochemical analysis. Anal Chim Acta. 2021;1149: 338199.

    Article  CAS  PubMed  Google Scholar 

  37. Xia N, Sun T, Liu L, Tian L, Sun Z. Heterogeneous sensing of post-translational modification enzymes by integrating the advantage of homogeneous analysis. Talanta. 2022;237: 122949.

    Article  CAS  PubMed  Google Scholar 

  38. Schmieder S, Weisspflog J, Danz N, Huebner M, Kreth S, Klotzbach U, Sonntag F. Ultrasensitive SPR detection of miRNA-93 using antibody-enhanced and enzymatic signal amplification. Eng Life Sci. 2017;17:1264–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aoki H, Corn RM, Matthews B. MicroRNA detection on microsensor arrays by SPR imaging measurements with enzymatic signal enhancement. Biosens Bioelectron. 2019;142: 111565.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang XL, Yang ZH, Chang YY, Liu D, Li YR, Chai YQ, Zhuo Y, Yuan R. Programmable mismatch-fueled high-efficiency DNA signal converter. Chem Sci. 2020;11(1):148–53.

    Article  CAS  PubMed  Google Scholar 

  41. Yang L, Liu C, Ren W, Li Z. Graphene surface-anchored fluorescence sensor for sensitive detection of microRNA coupled with enzyme-free signal amplification of hybridization chain reaction. ACS Appl Mater Interfaces. 2012;4(12):6450–3.

    Article  CAS  PubMed  Google Scholar 

  42. Cheng XR, Sze Hung VW, Scarano S, Mascini M, Minunni M, Kerman K. Label-free methods for probing the interaction of clioquinol with amyloid-β. Anal Methods. 2012;4(8):2228–32.

    Article  CAS  Google Scholar 

  43. Hilt S, Rojalin T, Viitala T, Koivuniemi A, Bunker A, Wachsmann-Hogiu S, Kálai T, Hideg K, Yliperttula M, Voss JC. Oligomerization alters binding affinity between Amyloid Beta and a modulator of peptide aggregation. J Phys Chem C. 2017;121(43):23974–87.

    Article  CAS  Google Scholar 

  44. Zhang C, Wan X, Zheng X, Shao X, Liu Q, Zhang Q, Qian Y. Dual-functional nanoparticles targeting amyloid plaques in the brains of Alzheimer’s disease mice. Biomaterials. 2014;35(1):456–65.

    Article  CAS  PubMed  Google Scholar 

  45. Hemmerová E, Špringer T, Krištofiková Z, Homola J. Ionic environment affects biomolecular interactions of amyloid-β: SPR Biosensor Study. Int J Mol Sci. 2020;21(24):9727.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fan Q, Liu Y, Wang X, Zhang Z, Fu Y, Liu L, Wang P, Ma H, Ma H, Seeram NP, Zheng J, Zhou F. Ginnalin a inhibits aggregation, reverses fibrillogenesis, and alleviates cytotoxicity of Amyloid β(1–42). ACS Chem Neurosci. 2020;11(4):638–47.

    Article  CAS  PubMed  Google Scholar 

  47. Ryu J, Joung H-A, Kim M-G, Park CB. Surface plasmon resonance analysis of Alzheimer’s beta-amyloid aggregation on a solid surface: From monomers to fully-grown fibrils. Anal Chem. 2008;80(7):2400–7.

    Article  CAS  PubMed  Google Scholar 

  48. Kim HJ, Sohn YS, Kim CD, Jang DH. Surface plasmon resonance sensing of a biomarker of Alzheimer disease in an intensity measurement mode with a bimetallic chip. J Korean Phys Soc. 2016;69(5):793–7.

    Article  CAS  Google Scholar 

  49. Zhao Z, Zhu L, Bu X, Ma H, Yang S, Yang Y, Hu Z. Label-free detection of Alzheimer’s disease through the ADP3 peptoid recognizing the serum amyloid-beta42 peptide. Chem Commun. 2015;51(4):718–21.

    Article  CAS  Google Scholar 

  50. Nangare S, Patil P. Chitosan mediated layer-by-layer assembly based graphene oxide decorated surface plasmon resonance biosensor for highly sensitive detection of β-amyloid. Int J Biol Macromol. 2022;214:568–82.

    Article  CAS  PubMed  Google Scholar 

  51. Xia N, Liu L, Harrington MG, Wang J, Zhou F. Regenerable and simultaneous surface plasmon resonance detection of Aβ(1–40) and Aβ(1–42) peptides in cerebrospinal fluids with signal amplification by streptavidin conjugated to an N-terminus-specific antibody. Anal Chem. 2010;82(24):10151–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Koch K-W, Frenzel D, Glück JM, Brener O, Oesterhelt F, Nagel-Steger L, Willbold D. Immobilization of homogeneous monomeric, oligomeric and fibrillar Aβ species for reliable SPR measurements. PLoS One. 2014;9(3): e89490.

    Google Scholar 

  53. Hegnerová K, Bocková M, Vaisocherová H, Krištofiková Z, Říčný J, Řípová D, Homola J. Surface plasmon resonance biosensors for detection of Alzheimer disease biomarker. Sens Actuators B. 2009;139(1):69–73.

    Article  Google Scholar 

  54. Lisi S, Scarano S, Fedeli S, Pascale E, Cicchi S, Ravelet C, Peyrin E, Minunni M. Toward sensitive immuno-based detection of tau protein by surface plasmon resonance coupled to carbon nanostructures as signal amplifiers. Biosens Bioelectron. 2017;93:289–92.

    Article  CAS  PubMed  Google Scholar 

  55. Nangare S, Patil P. Poly(allylamine) coated layer-by-layer assembly decorated 2D carbon backbone for highly sensitive and selective detection of Tau-441 using surface plasmon resonance biosensor. Anal Chim Acta. 2023;1271: 341474.

    Article  CAS  PubMed  Google Scholar 

  56. Li C-Z, Grajales S, Shuang S, Dong C, Nair M. β-Amyloid biomarker detection for Alzheimer’s disease. J Anal Test. 2017;1(2):15.

    Article  Google Scholar 

  57. Vestergaard MD, Kerman K, Kim D-K, Hiep HM, Tamiya E. Detection of Alzheimer’s tau protein using localised surface plasmon resonance-based immunochip. Talanta. 2008;74(4):1038–42.

    Article  CAS  PubMed  Google Scholar 

  58. Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D. Structure and pathology of tau protein in Alzheimer disease. Int J Alzheimer’s Dis. 2012;2012: 731526.

    Google Scholar 

  59. Hanger DP, Byers HL, Wray S, Leung K-Y, Saxton MJ, Seereeram A, Reynolds CH, Ward MA, Anderton BH. Novel phosphorylation sites in tau from Alzheimer brain support a role for casein kinase 1 in disease pathogenesis. J Biol Chem. 2007;282(32):23645–54.

    Article  CAS  PubMed  Google Scholar 

  60. Vu Nu TT, Tran NHT, Nam E, Nguyen TT, Yoon WJ, Cho S, Kim J, Chang K-A, Ju H. Blood-based immunoassay of tau proteins for early diagnosis of Alzheimer’s disease using surface plasmon resonance fiber sensors. RSC Adv. 2018;8(14):7855–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Rev. 2000;33(1):95–130.

    Article  PubMed  Google Scholar 

  62. Kim S, Park J, Wark A, Jhung SH, Lee H. Tandem femto- and nanomolar analysis of two protein biomarkers in plasma on a single mixed antibody monolayer surface using surface plasmon resonance. Anal Chem. 2017;89(22):12562–8.

    Article  CAS  PubMed  Google Scholar 

  63. Kristofikova Z, Ricny J, Kolarova M, Vyhnalek M, Hort J, Laczo J, Sirova J, Ripova D. Interactions between Amyloid-β and Tau in cerebrospinal fluid of people with mild cognitive impairment and Alzheimer’s disease. J Alzheimer’s Dis. 2014;42(s3):S91–8.

    Article  Google Scholar 

  64. Sciacca B, François A, Klingler-Hoffmann M, Brazzatti J, Penno M, Hoffmann P, Monro TM. Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications. Nanomedicine. 2013;9(4):550–7.

    Article  CAS  PubMed  Google Scholar 

  65. Yamauchi Y, Deguchi N, Takagi C, Tanaka M, Dhanasekaran P, Nakano M, Handa T, Phillips MC, Lund-Katz S, Saito H. Role of the N- and C-terminal domains in binding of apolipoprotein E isoforms to heparan sulfate and dermatan sulfate: a surface plasmon resonance study. Biochemistry. 2008;47(25):6702–10.

    Article  CAS  PubMed  Google Scholar 

  66. Kang MK, Lee J, Nguyen AH, Sim SJ. Label-free detection of ApoE4-mediated β-amyloid aggregation on single nanoparticle uncovering Alzheimer’s disease. Biosens Bioelectron. 2015;72:197–204.

    Article  CAS  PubMed  Google Scholar 

  67. Islam T, Gharibyan AL, Golchin SA, Pettersson N, Brännström K, Hedberg I, Virta MM, Olofsson L, Olofsson A. Apolipoprotein E impairs amyloid-β fibril elongation and maturation. FEBS J. 2019;287(6):1208–19.

    Article  PubMed  Google Scholar 

  68. Yi X, Xia Y, Ding B, Wu L, Hu S, Wang Z, Yang M, Wang J. Dual-channel surface plasmon resonance for quantification of ApoE Gene and Genotype discrimination in unamplified genomic DNA extracts. ACS Sens. 2018;3(11):2402–7.

    Article  CAS  PubMed  Google Scholar 

  69. Troutwine BR, Hamid L, Lysaker CR, Strope TA, Wilkins HM. Apolipoprotein E and Alzheimer’s disease. Acta Pharm Sin B. 2022;12(2):496–510.

    Article  CAS  PubMed  Google Scholar 

  70. Mah D, Zhu Y, Su G, Zhao J, Canning A, Gibson J, Song X, Stancanelli E, Xu Y, Zhang F, Linhardt RJ, Liu J, Wang L, Wang C. Apolipoprotein E recognizes Alzheimer’s disease associated 3-O sulfation of heparan sulfate. Angew Chem Int Ed. 2023;62(23): e202212636.

    Article  CAS  Google Scholar 

  71. Chaubey MG, Patel SN, Rastogi RP, Srivastava PL, Singh AK, Madamwar D, Singh NK. Therapeutic potential of cyanobacterial pigment protein phycoerythrin: in silico and in vitro study of BACE1 interaction and in vivo Aβ reduction. Int J Biol Macromol. 2019;134:368–78.

    Article  CAS  PubMed  Google Scholar 

  72. Mondal K, Regnstrom K, Morishige W, Barbour R, Probst G, Xu Y-Z, Artis DR, Yao N, Beroza P, Bova MP. Thermodynamic and kinetic characterization of hydroxyethylamine β-secretase-1 inhibitors. Biochem Biophys Res Commun. 2013;441(2):291–6.

    Article  CAS  PubMed  Google Scholar 

  73. Rombouts FJR, Alexander R, Cleiren E, De Groot A, Carpentier M, Dijkmans J, Fierens K, Masure S, Moechars D, Palomino-Schätzlein M, Pineda-Lucena A, Trabanco AA, Van Glabbeek D, Vos A, Tresadern G. Fragment binding to β-secretase 1 without catalytic aspartate interactions identified via orthogonal screening approaches. ACS Omega. 2017;2(2):685–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Christopeit T, Stenberg G, Gossas T, Nyström S, Baraznenok V, Lindström E, Danielson UH. A surface plasmon resonance-based biosensor with full-length BACE1 in a reconstituted membrane. Anal Biochem. 2011;414(1):14–22.

    Article  CAS  PubMed  Google Scholar 

  75. Yi X, Hao Y, Xia N, Wang J, Quintero M, Li D, Zhou F. Sensitive and continuous screening of inhibitors of β-site amyloid precursor protein cleaving enzyme 1 (BACE1) at single SPR chips. Anal Chem. 2013;85(7):3660–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nangare S, Patil P. Nanoarchitectured bioconjugates and bioreceptors mediated surface plasmon resonance biosensor for in vitro diagnosis of Alzheimer’s disease: development and future prospects. Crit Rev Anal Chem. 2022;52(5):1139–69.

    Article  CAS  PubMed  Google Scholar 

  77. Shekhar S, Kumar R, Rai N, Kumar V, Singh K, Upadhyay AD, Tripathi M, Dwivedi S, Dey AB, Dey S. Estimation of tau and phosphorylated Tau181 in serum of Alzheimer’s disease and mild cognitive impairment patients. PLoS One. 2016;11(7): e0159099.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Quan L, Wu J, Lane LA, Wang J, Lu Q, Gu Z, Wang Y. Enhanced detection specificity and sensitivity of Alzheimer’s disease using amyloid-β-targeted quantum dots. Bioconjug Chem. 2016;27(3):809–14.

    Article  CAS  PubMed  Google Scholar 

  79. Negahdary M, Heli H. An electrochemical peptide-based biosensor for the Alzheimer biomarker amyloid-β(1–42) using a microporous gold nanostructure. Microchim Acta. 2019;186(12):766.

    Article  CAS  Google Scholar 

  80. Duan C, Jiao J, Zheng J, Li D, Ning L, Xiang Y, Li G. Polyvalent biotinylated aptamer scaffold for rapid and sensitive detection of tau proteins. Anal Chem. 2020;92(22):15162–8.

    Article  CAS  PubMed  Google Scholar 

  81. Chen L, Lin J, Yi J, Weng Q, Zhou Y, Han Z, Li C, Chen J, Zhang Q. A tyrosinase-induced fluorescence immunoassay for detection of tau protein using dopamine-functionalized CuInS2/ZnS quantum dots. Anal Bioanal Chem. 2019;411(20):5277–85.

    Article  CAS  PubMed  Google Scholar 

  82. Wang SX, Acha D, Shah AJ, Hills F, Roitt I, Demosthenous A, Bayford RH. Detection of the tau protein in human serum by a sensitive four-electrode electrochemical biosensor. Biosens Bioelectron. 2017;92:482–8.

    Article  CAS  PubMed  Google Scholar 

  83. Lu H, Ding B, Tong L, Wu F, Yi X, Wang J. Toehold-mediated strand displacement reaction for dual-signal electrochemical assay of apolipoprotein E genotyping. ACS Sens. 2020;5(9):2959–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of this work by the National Natural Science Foundation of China (22076221, 21876208), the Central South University Innovation-Driven Research Programme (2023CXQD022), and the Hunan Provincial Science and Technology Plan Project, China (2019TP1001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianxiu Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Chen, H., He, Y. et al. Assay of Biomarkers for Alzheimer’s Disease by Surface Plasmon Resonance. J. Anal. Test. (2024). https://doi.org/10.1007/s41664-024-00299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-024-00299-x

Keywords

Navigation