Skip to main content
Log in

Flow Injection Analysis Technique for Online Preconcentration of Lead Ions in Airborne Particulate Matter Using Imprinted Polymer as the Sorbent

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

This work reported a simple and sensitive flow injection analysis (FIA) technique coupled with a Flame Atomic Absorption Spectrophotometer (FAAS) for online preconcentration of lead(II) ions in the airborne particulate matter samples (PM2.5) using ion-imprinted polymers as adsorbent packed in minicolumn. A bulk polymerization method was chosen to synthesize the polymer based on a ternary complex of lead ions with 4-2-pyridilazo resorcinol and 4-vinyl pyridine with methacrylic acid as a functional monomer. The optimum pH for sorption was 6, and other variables for the FIA system were optimized, including breakthrough volume, eluent concentration, and eluent volume. The optimum conditions were reached with a breakthrough volume of 4.45 mL, calculated as a dynamic retention capacity of 5.20 mg/g of Pb(II) 40 mg/L, with a 1.5 mL/min flow rate. The eluent used for the FIA system was 0.5 mL HNO3 of 3 mol/L. Linearity, precision, and limits of detection of the FIA system were determined before being applied to preconcentration and analysis of lead ions in PM2.5 samples. The precision of the method was determined to be 3.09% by calculating the coefficients of the variant. Linearity of the method in the concentration range of 50–1000 µg/L gave a coefficient correlation of 0.9925, showing a good response, and the limit of detection of the system was 5.11 µg/L, better than that of the FAAS method. Performances of the FIA system were evaluated and showed good results with an enrichment factor of more than 20 times higher and a concentration efficiency of 11.65 min−1 with a consumptive index of 4.5 mL. Preconcentration and analysis of the PM2.5 samples in Bandung City showed the concentrations of Pb(II) were 26.67 µg/L and 33.3 µg/L with the accuracy of the method for each sample of 104.75% and 107.86%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data supporting the findings reported in this study are available on reasonable request from the corresponding author.

References

  1. González LT, Longoria Rodríguez FE, Sánchez-Domínguez M, Cavazos A, Leyva-Porras C, Silva-Vidaurri LG, Askar K, Kharissov B, Villareal Chiu J, Afaro Barbosa J. Determination of trace metals in TSP and PM25 materials collected in the Metropolitan Area of Monterrey, Mexico: a characterization study by XPS, ICP-AES and SEM-EDS. Atmos Res. 2017;1(196):8–22.

    Article  Google Scholar 

  2. Gao Y, Ji H. Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2.5 and PM10: One-year measurement in a densely populated area of urban Beijing. Atmos Res. 2018;212:213–26.

    Article  CAS  Google Scholar 

  3. Franzin BT, Guizellini FC, de Babos DV, Hojo O, Pastre IA, Marchi MRR, Fertonani F, Oliveira C. Characterization of atmospheric aerosol (PM10 and PM2.5) from a medium sized city in São Paulo state, Brazil. J Environ Sci. 2020;1(89):238–51.

    Article  Google Scholar 

  4. Alharbi B, Shareef MM, Husain T. Study of chemical characteristics of particulate matter concentrations in Riyadh, Saudi Arabia. Atmos Pollut Res. 2015;6(1):88–98.

    Article  CAS  Google Scholar 

  5. Police S, Sahu SK, Pandit GG. Chemical characterization of atmospheric particulate matter and their source apportionment at an emerging industrial coastal city, Visakhapatnam, India. Atmos Pollut Res. 2016;7(4):725–33.

    Article  Google Scholar 

  6. WHO air quality guideline 2021. https://apps.who.int/iris/handle/10665/345329.

  7. Johnson TM, GS, WGJ, AP, BTC, RAG, WJG, WJ. Tools for improving air quality management tools for improving air quality management energy sector management assistance program. 2011. Available from: www.esmap.org.

  8. Jiang SYN, Yang F, Chan KL, Ning Z. Water solubility of metals in coarse PM and PM2.5 in typical urban environment in Hong Kong. Atmos Pollut Res. 2014;5(2):236–44.

    Article  CAS  Google Scholar 

  9. Leili M, Naddafi K, Nabizadeh R, Yunesian M, Mesdaghinia A. The study of TSP and PM10 concentration and their heavy metal content in central area of Tehran, Iran. Air Qual Atmos Health. 2008;1(3):159–66.

    Article  CAS  Google Scholar 

  10. Lee BK, Hieu NT. Seasonal variation and sources of heavy metals in atmospheric aerosols in a residential area of Ulsan, Korea. Aerosol Air Qual Res. 2011;11(6):679–88.

    Article  CAS  Google Scholar 

  11. Popoola LT, Adebanjo SA, Adeoye BK. Assessment of atmospheric particulate matter and heavy metals: a critical review. Int J Environ Sci Tec. 2018;15(5):935–48.

    Article  CAS  Google Scholar 

  12. Monged MHE, Imam NG, Aquilanti G, Pollastri S, Rashad AM, Osán J. Heavy metals concentrations and speciation of Pb and Ni in airborne particulate matter over two residential sites in Greater Cairo - reflection from synchrotron radiation. J Synchrotron Radiat. 2022;29:765–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li X, Zhang Y, Tan M, Liu J, Bao L, Zhang G, Li Y, Iida A. Atmospheric lead pollution in fine particulate matter in Shanghai, China. J Environ Sci. 2009;21(8):1118–24.

    Article  CAS  Google Scholar 

  14. Wang S, Zhang J. Blood lead levels in children, China. Environ Res. 2006;101(3):412–8.

    Article  CAS  PubMed  Google Scholar 

  15. Gemeiner H, de Araujo DT, Sulato ET, Galhardi JA, Gomes ACF, de Almeida E, Menegário AA, Gastmans D, Kiang CH. Elemental and isotopic determination of lead (Pb) in particulate matter in the Brazilian city of Goiânia (GO) using ICP-MS technique. Environ Sci Pollut Res. 2017;24(25):20616–25.

    Article  CAS  Google Scholar 

  16. Mielke HW, Zahran S. The urban rise and fall of air lead (Pb) and the latent surge and retreat of societal violence. Environ Int. 2012;43(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  17. Jung CC, Chou CCK, Huang YT, Chang SY, Lee C-T, Lin CY, Cheung H, Kuo W, Chang C, Chang S. Isotopic signatures and source apportionment of Pb in ambient PM2.5. Sci Rep. 2022;12(1):4343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Grigoratos T, Samara C, Voutsa D, Manoli E, Kouras A. Chemical composition and mass closure of ambient coarse particles at traffic and urban-background sites in Thessaloniki, Greece. Enviro Sci Pollut Res. 2014;21(12):7708–22.

    Article  CAS  Google Scholar 

  19. Helaluddin ABM, Khalid RS, Alaama M, Abbas SA. Main analytical techniques used for elemental analysis in various matrices. Trop J Pharm Res. 2016;15(2):427–34.

    Article  CAS  Google Scholar 

  20. Razos P, Christides A. An investigation on heavy metals in an industrial area in Greece. Int J Environ Res. 2010;4(4):785–94.

    CAS  Google Scholar 

  21. Almeida TS, Brancher M, de Melo Lisba H, Franco D, Maranhão TA, Borges DLG. Direct analysis of particulate matter (PM10) for the determination of Be, Cd and Pb using high resolution-continuum source electrothermal atomic absorption spectrometry: Assessment of the potential correlation between analyte content and meteorological parameters. Spectrochim Acta Part B At Spectrosc. 2020;172: 105951.

    Article  CAS  Google Scholar 

  22. Behbahani M, Bagheri A, Taghizadeh M, Salarian M, Sadeghi O, Adlnasab L, Jalali K. Synthesis and characterisation of nano structure lead (II) ion-imprinted polymer as a new sorbent for selective extraction and preconcentration of ultra trace amounts of lead ions from vegetables, rice, and fish samples. Food Chem. 2013;138(2–3):2050–6.

    Article  CAS  PubMed  Google Scholar 

  23. Behbahani M, Salimi S, Abandansari HS, Omidi F, Salarian M, Esrafili A. Application of a tailor-made polymer as a selective and sensitive colorimetric sensor for reliable detection of trace levels of uranyl ions in complex matrices. RSC Adv. 2015;5(74):59912–20.

    Article  CAS  Google Scholar 

  24. Jiang Y, Tang B, Zhao P, Xi M, Li Y. Synthesis of copper and lead ion imprinted polymer submicron spheres to remove Cu2+ and Pb2+. J Inorg Organomet Polym Mater. 2021;31(12):4628–36.

    Article  CAS  Google Scholar 

  25. Amran MB, Aminah S, Rusli H, Buchari B. Bentonite-based functional material as preconcentration system for determination of chromium species in water by flow injection analysis technique. Heliyon. 2020;6(5): e04051.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rocha FRP, Batista AD, Melchert WR, Zagatto EAG. Solid-phase extractions in flow analysis. An Acad Bras Cienc. 2018;90(1):803–24.

    Article  CAS  PubMed  Google Scholar 

  27. Do Lago AC, Marchioni C, Mendes TV, Wisniewski C, Fadini PS, Luccas PO. Ion imprinted polymer for preconcentration and determination of ultra-trace cadmium, employing flow injection analysis with thermo spray flame furnace atomic absorption spectrometry. Appl Spectrosc. 2016;70(11):1842–50.

    Article  PubMed  Google Scholar 

  28. Rajabi HR, Shamsipur M, Zahedi MM, Roushani M. On-line flow injection solid phase extraction using imprinted polymeric nanobeads for the preconcentration and determination of mercury ions. Chem Eng J. 2015;259:330–7.

    Article  CAS  Google Scholar 

  29. Fereidoonipour F, Rajabi HR. Development of flow injection analysis-solid phase extraction based on ion imprinted polymeric nanoparticles as an efficient and selective technique for preconcentration of zinc ions from aqueous solution. New J Chem. 2017;41(17):8828–36.

    Article  CAS  Google Scholar 

  30. Arbab-Zavar MH, Chamsaz M, Zohuri G, Darroudi A. Synthesis and characterization of nano-pore thallium (III) ion-imprinted polymer as a new sorbent for separation and preconcentration of thallium. J Hazard Mater. 2011;185(1):38–43.

    Article  CAS  PubMed  Google Scholar 

  31. Basaglia AM, Corazza MZ, Segatelli MG, Tarley CRT. Synthesis of Pb(II)-imprinted poly(methacrylic acid) polymeric particles loaded with 1-(2-pyridylazo)-2-naphthol (PAN) for micro-solid phase preconcentration of Pb2+ on-line coupled to flame atomic absorption spectrometry. RSC Adv. 2017;7(52):33001–11.

    Article  CAS  Google Scholar 

  32. Darroudi A, Arbab Zavar MH, Chamsaz M, Zohuri G, Ashraf N. Ion-imprinted polymer mini-column for on-line preconcentration of thallium(iii) and its determination by flame atomic absorption spectrometry. Anal Methods. 2012;4(11):3798–803.

    Article  CAS  Google Scholar 

  33. Dos Santos QO, Bezerra MA, De Fátima LG, Diniz KM, Segatelli MG, Germiniano TO, Da Silva SV, Tarley C. Synthesis, characterization and application of ion imprinted poly(vinylimidazole) for zinc ion extraction/preconcentration with FAAS determination. Quim Nova. 2014;37(1):63–8.

    Article  Google Scholar 

  34. Gawin M, Konefał J, Trzewik B, Walas S, Tobiasz A, Mrowiec H, Witek E. Preparation of a new Cd(II)-imprinted polymer and its application to determination of cadmium(II) via flow-injection-flame atomic absorption spectrometry. Talanta. 2010;80(3):1305–10.

    Article  CAS  PubMed  Google Scholar 

  35. Tarley CRT, Corazza MZ, Somera BF, Segatelli MG. Preparation of new ion-selective cross-linked poly(vinylimidazole-co-ethylene glycol dimethacrylate) using a double-imprinting process for the preconcentration of Pb2+ ions. J Colloid Interface Sci. 2015;450:254–63.

    Article  CAS  PubMed  Google Scholar 

  36. Walas S, Tobiasz A, Gawin M, Trzewik B, Strojny M, Mrowiec H. Application of a metal ion-imprinted polymer based on salen-Cu complex to flow injection preconcentration and FAAS determination of copper. Talanta. 2008;76(1):96–101.

    Article  CAS  PubMed  Google Scholar 

  37. Yebra-Biurrun MC, Castro-Romero JM, Carro-Mariño N. Flow-injection flame atomic absorption determination of hexavalent chromium with on-line preconcentration on an anion imprinted polymer. Am J Analyt Chem. 2012;3(11):755–60.

    Article  Google Scholar 

  38. Karthikeyan S, Joshi UM, Balasubramanian R. Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: evaluation of bioavailability. Anal Chim Acta. 2006;576(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  39. Ambarsari N, Zulfikar MA, Amran MB. Synthesis of ternary complex-based ion imprinted polymer sorbent for selective adsorption of lead ions. Anal Bioanal Chem Res. 2023;10(1):71–86.

    CAS  Google Scholar 

  40. James D, Venkateswaran G, Prasada RT. Removal of uranium from mining industry feed simulant solutions using trapped amidoxime functionality within a mesoporous imprinted polymer material. Micropor Mesopor Mat. 2009;119(1–3):165–70.

    Article  CAS  Google Scholar 

  41. Pakade VE, Cukrowska EM, Darkwa J, Darko G, Torto N, Chimuka L. Simple and efficient ion imprinted polymer for recovery of uranium from environmental samples. Water Sci Technol. 2012;65(4):728–36.

    Article  CAS  PubMed  Google Scholar 

  42. Daniel S, Praveen RS, Rao TP. Ternary ion-association complex based ion imprinted polymers (IIPs) for trace determination of palladium(II) in environmental samples. Anal Chim Acta. 2006;570(1):79–87.

    Article  CAS  Google Scholar 

  43. Ribas TCF, Tóth IV, Rangel AOSS. A solid phase extraction flow injection spectrophotometric method for the zinc determination in plants. Microchem J. 2017;130:366–70.

    Article  CAS  Google Scholar 

  44. Ghaedi M, Mokhtari P, Montazerozohori M, Asghari A, Soylak M. Multiwalled carbon nanotube impregnated with bis(5-bromosalicylidene)-1,3-propandiamine for enrichment of Pb2+ ion. J Ind Eng Chem. 2014;20(2):638–43.

    Article  CAS  Google Scholar 

  45. Fang Z, Dong L, Xu S. Critical evaluation of the efficiency and synergistic effects of flow injection techniques for sensitivity enhancement in flame atomic absorption spectrometry. J Anal Atom Spectrom. 1992;7(2):293.

    Article  CAS  Google Scholar 

  46. Moradi SE, Baniamerian MJ. Applications of chemically modified ordered mesoporous carbon as solid phase extraction sorbent for preconcentration of trace lead ion in water samples. Chem Ind Chem Eng Q. 2011;17(4):397–408.

    Article  CAS  Google Scholar 

  47. Karadaş C, Kara D. On-line preconcentration and determination of trace elements in waters and reference cereal materials by flow injection - FAAS using newly synthesized 8-hydroxy-2-quinoline carboxaldehyde functionalized Amberlite XAD-4. J Food Compos Anal. 2013;32(1):90–8.

    Article  Google Scholar 

  48. da Silva PAB, de Souza GCS, Leotério DMS, Belian MF, Silva WE, Paim APS, Lavorante A. Synthesis and characterization of functionalized silica with 3,6-ditia-1,8-octanediol for the preconcentration and determination of lead in milk employing multicommuted flow system coupled to FAAS. J Food Compos Anal. 2015;40:177–84.

    Article  Google Scholar 

Download references

Acknowledgements

This research was part of the dissertation research founded by BRIN, Indonesia. The authors also thank the PRIMA-BRIN chemistry laboratory for providing the sampling location and equipment.

Funding

Badan Riset dan Inovasi Nasional, Dissertation research grant.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Bachri Amran or Novita Ambarsari.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amran, M.B., Ambarsari, N., Zulfikar, M.A. et al. Flow Injection Analysis Technique for Online Preconcentration of Lead Ions in Airborne Particulate Matter Using Imprinted Polymer as the Sorbent. J. Anal. Test. (2024). https://doi.org/10.1007/s41664-024-00294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41664-024-00294-2

Keywords

Navigation