Skip to main content
Log in

Synthesis of Copper and Lead Ion Imprinted Polymer Submicron Spheres to Remove Cu2+ and Pb2+

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

In this paper, Methacrylic acid (MAA) and 4-vinyl pyridine (4-VP) as functional monomers, Ethylene glycol two methyl acrylate (EGDMA) as crosslinking agent, isopropyl alcohol as the solvent, prepared the Cu(II)- and Pb(II)- imprinted polymers (IIPs) submicron spheres by precipitation polymerization. The presence/absence of the template ion in the preparation of the imprinted polymer was confirmed by EDX spectroscopy, and the structure of the particles was investigated using IR, SEM and BET analysis. From different components of crosslinker/monomer (C/M) ratio analysis, C/M at 1:3 was the optimal ratio for preparing IIPs. Atomic absorption spectroscopy (AAS) was characterized the imprinted polymers absorption behavior. The results show that the maximum adsorption capacity of Cu2+ and Pb2+ -imprinted polymer were 26.9 mg g−1 and 25.3 mg g−1, respectively. They also have good adsorption capacity and superior selectivity property for Cu2+ and Pb2+ in water, respectively. The selectivity factors (α) for Ni2+, Zn2+, Co2+ and Fe2+ were 16.5 (Cu2+) and 12.1 (Pb2+), 13.8 (Cu2+) and 16.2 (Pb2+), 10.8 (Cu2+) and 10.1 (Pb2+), 20.4 (Cu2+) and 20.7 (Pb2+), respectively. The regeneration experiment result demonstrates an excellent re-utilization property of these two type IIPs, after ten uses, the adsorption capacity can maintain above 60%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.N. Dil, M. Sadeghi, J. Hazard. Mater. 351, 38 (2018)

    Article  CAS  Google Scholar 

  2. L. Elci, M. Dogan, Fresen. J. Anal. Chem. 330, 610 (1988)

    Article  CAS  Google Scholar 

  3. E. Carasek, Talanta 51, 173 (2000)

    Article  CAS  Google Scholar 

  4. M.L. Tummino, R. Nistico, C. Riedo, D. Fabbri, G. Magnacca, Chem-Eur. J. 27, 660 (2020)

    Article  Google Scholar 

  5. D. Wang, B. Zhang, L.F. Xu, L.N. Huang, Bull. Chem. Soc. Jpn. 93, 92 (2020)

    Article  CAS  Google Scholar 

  6. O. Almeida, R.M. Menezes, L.S. Nunes, V.A. Lemos, F.G. Velasco, Environ. Technol. Innov. 21, 101336 (2020)

    Article  Google Scholar 

  7. B. Unnikrishnan, C.W. Lien, H.W. Chu, H.W. Chu, H.W. Chu, J. Hazard. Mater. 401, 123397 (2020)

    Article  Google Scholar 

  8. P.G. Krishna, J.M. Gladis, T.P. Rao, G.R. Naidu, J. Mol. Recog. 18, 109 (2005)

    Article  CAS  Google Scholar 

  9. G. Wulff, A. Sarhan, Angew. Chem. Int. Ed. 11, 341 (1972)

    CAS  Google Scholar 

  10. H.H. Yang, S.Q. Zhang, W. Yang, X.L. Chen, Z.X. Zhang, J.G. Xu, X.R. Wang, J. Am. Chem. Soc. 126, 4054 (2004)

    Article  CAS  Google Scholar 

  11. A. Ma, A. Ms, B. Bs, J. Electroanal. Chem. 879, 114788 (2020)

    Article  Google Scholar 

  12. M. Saraji, H. Yousefi, J. Hazard. Mater. 167, 1152 (2009)

    Article  CAS  Google Scholar 

  13. D.K. Singh, S. Mishra, J. Hazard. Mater. 164, 1547 (2009)

    Article  CAS  Google Scholar 

  14. D.K. Singh, S. Mishra, Desalination 257, 177 (2010)

    Article  CAS  Google Scholar 

  15. G. Bayramoglu, M.Y. Arica, J. Hazard. Mater. 187, 213 (2011)

    Article  CAS  Google Scholar 

  16. G.M. Murray, K.A. Van Houten, G.L. Southard 2007 WO Patent 2007/055767A1.

  17. A. Bhaskarapillai, N.V. Sevilimedu, B. Sellergren, Ind. Eng. Chem. Res. 48, 3730 (2009)

    Article  CAS  Google Scholar 

  18. V.M. Biju, J.M. Gladis, T.P. Rao, Anal. Chim. Acta 478, 43 (2003)

    Article  CAS  Google Scholar 

  19. M.R. Ganjali, A. Ghesmi, M. Hosseini, M.R. Pourjavid, M. Rezapour, M. Shamsipur, M.S. Niasari, Sens. Actuators B 105, 334 (2005)

    Article  CAS  Google Scholar 

  20. M.R. Ganjali, L. Naji, T. Poursaberi, M. Shamsipur, S. Haghgoo, Anal. Chim. Acta 475, 59 (2003)

    Article  CAS  Google Scholar 

  21. M.R. Ganjali, M.R. Pourjavid, M. Rezapour, S. Haghgoo, Sens. Actuators B 89, 21 (2003)

    Article  CAS  Google Scholar 

  22. M.R. Ganjali, A. Daftari, M. Rezapour, T. Puorsaberi, S. Haghgoo, Talanta 59, 613 (2003)

    Article  CAS  Google Scholar 

  23. M. Shamsipur, M. Yousefi, M.R. Ganjali, Anal. Chem. 72, 2391 (2000)

    Article  CAS  Google Scholar 

  24. Y. Jiang, D. Kim, Chem. Eng. J. 166, 435 (2011)

    Article  CAS  Google Scholar 

  25. Y. Jiang, D. Kim, Polym. Adv. Technol. 24, 747 (2013)

    Article  CAS  Google Scholar 

  26. M. Kim, Y. Jiang, D. Kim, React. Funct. Polym. 73, 821 (2013)

    Article  CAS  Google Scholar 

  27. Y. Jiang, D. Kim, Chem. Eng. J. 232, 503 (2013)

    Article  CAS  Google Scholar 

  28. Y. Jiang, D. Kim, J. Nanosci. Nanotechnol. Revisions 14, 8578 (2014)

    Article  CAS  Google Scholar 

  29. Y. Jiang, D. Kim, Ind. Eng. Chem. Res. 53, 13340 (2014)

    Article  CAS  Google Scholar 

  30. N.T. Hoai, D. Kim, AIChE J. 55, 3248 (2009)

    Article  CAS  Google Scholar 

  31. N.T. Hoai, D.K. Yoo, D. Kim, J. Hazard. Mater. 173, 462 (2010)

    Article  CAS  Google Scholar 

  32. R. Huang, N. Shao, L. Hou, X. Zhu, Colloid Surface A 566, 218 (2019)

    Article  CAS  Google Scholar 

  33. W. Shen, X. Jiang, Q. An, Z.Y. Xiao, S.R. Zhai, L. Cui, New J. Chem. 43, 5495 (2019)

    Article  CAS  Google Scholar 

  34. H. Wang, H. Shang, X. Sun, L. Hou, M. Wen, Y. Qiao, Colloid Surface A 585, 124139 (2020)

    Article  CAS  Google Scholar 

  35. A. Bukhari, N.H. Elsayed, M. Monier, Int. J. Biol. Macromol. 155, 795 (2020)

    Article  Google Scholar 

  36. S.D. Masi, A. Pennetta, A. Guerreiro, F. Canfarotta, C. Malitesta, Sensor Actuat B-Chem. 307, 127648 (2019)

    Article  Google Scholar 

  37. B. Ara, M. Muhammad, T.U.Z. Rani, K. Gul, Desalin. Water. Treat. 191, 173 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Zhejiang Provincial Natural Science Foundation (No. LQ19E030014). National Natural Science Foundation of China (No. 81901900). National Natural Science Foundation of China (No. 51902135).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Man Xi or Yi Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Tang, B., Zhao, P. et al. Synthesis of Copper and Lead Ion Imprinted Polymer Submicron Spheres to Remove Cu2+ and Pb2+. J Inorg Organomet Polym 31, 4628–4636 (2021). https://doi.org/10.1007/s10904-021-02065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02065-3

Keywords

Navigation