Skip to main content
Log in

Emerging NIR-II Luminescent Gold Nanoclusters for In Vivo Bioimaging

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

Gold nanoclusters (AuNCs) with near-infrared II (NIR-II) photoluminescence (PL) have emerged as novel bioimaging probes for in vivo disease diagnosis. So far, it still lacks a systematic review focusing on the synthesis, PL tuning, and in vivo imaging of NIR-II luminescent AuNCs. In this review, we briefly introduce the synthesis of NIR-II luminescent AuNCs using various surface ligands. We discuss the origins and properties of NIR-II PL in AuNCs, and summarize the strategies for improving and/or tuning NIR-II PL emissions. We also provide an overview of the recent progress in the application of AuNCs in tumor-targeted imaging, molecular imaging, and other areas (such as the sensitive imaging of bones, vessels, lymph nodes, etc.). Finally, we present the prospects and challenges in the field of NIR-II luminescent AuNCs and related imaging applications, expecting to offer comprehensive understanding of this field, and thereby deepening and broadening the biological application of AuNCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [23,24,25,26,27,28,29,30]. Copyright Wiley–VCH, American Chemical Society

Fig. 2

Reproduced with permission from Ref. [36, 40, 53, 54]. Copyright Wiley–VCH, American Chemical Society, Royal Society of Chemistry

Fig. 3

Reproduced with permission from Ref. [52]. Copyright 2023, Wiley–VCH; b Scheme illustration of the structure and NIR-II PL of AuNCs protected by mercaptohexanoic acid (MHA)/tetra (ethylene glycol) dithiol (TDT), MHA, GSH, and etc. Reproduced with permission from Ref. [36]. Copyright 2020, American Chemical Society; c Scheme illustration of the incorporation of Au25NCs into BSA and corresponding PL spectra (λex = 700 nm). Reproduced with permission from Ref. [55]. Copyright 2022, Elsevier; d Schematic illustration of ligand exchange process of TPPTS-AuNCs by GSH, and the PL spectra and intensity changes at different GSH concentrations. Reproduced with permission from Ref. [53]. Copyright 2022, American Chemical Society

Fig. 4

Reproduced with permission from Ref. [42]. Copyright 2020, Wiley–VCH. b Schematic diagram of tumor-targeted NIR-II PL imaging based on CDS-AuNCs that enabled the labeling of antibody (Ab) via host–guest interaction. NIR-II PL imaging of mice was shown at various time points post intravenous injection of non-target and target probes, respectively. Reproduced with permission from Ref. [35]. Copyright 2021, Wiley–VCH

Fig. 5

Reproduced with permission from Ref. [41]. Copyright 2022, American Chemical Society. b Lymph node imaging studies based on PC-modified AuNCs. The structure of AuNCs and PC modification were shown. NIR-II PL images of mice were presented after the intratumor injection of AuNCs and PC-AuNCs, respectively. The excretion rates were also determined, revealing the higher renal clearance efficiency of PC-AuNCs than AuNCs. Reproduced with permission from Ref. [68]. Copyright 2022, Springer Nature

Fig. 6

Reproduced with permission from Ref. [34]. Copyright 2022, American Chemical Society; b Schematic illustration of the assemblies of AuNCs and lanthanide NPs and their in vivo NIR-II PL imaging of mice tumors. Reproduced with permission from Ref. [77]. Copyright 2023, American Chemical Society; c Schematic illustration of in vivo GSH imaging of AuNCs based on the ligand exchange strategy, which enabled early imaging of metabolic acidosis-induced kidney injury. Reproduced with permission from Ref. [53]. Copyright 2023, American Chemical Society; d Schematic diagram of the synthesis of poly-dopamine-coated AuNCs (with loading of MB) for in vivo NIR-II PL imaging of gastric acid secretion. Reproduced with permission from Ref. [78]. Copyright 2022, Elsevier

Fig. 7

Reproduced with permission from Ref. [24]. Copyright 2017, American Chemical Society; b Dynamic brain imaging of stroke mouse and PCA overlaid images with arterial (red) and venous (blue) vessels. Reproduced with permission from Ref. [23]. Copyright 2019, Wiley–VCH; c Scheme of the MHA/TDT-Au NCs and NIR-II PL images of a Bmp9-KO mouse after MCR processing. Reproduced with permission from Ref. [36]. Copyright 2020, American Chemical Society; d White-light images and NIR-II PL images of the precipitates of HA and different concentrations of AuNCs. NIR-II PL images of mice revealed the sensitive bone imaging capability of AuNCs. Reproduced with permission from Ref. [87]. Copyright 2020, Wiley–VCH

Similar content being viewed by others

Data availability

The data are available from the corresponding authors on reasonable request.

References

  1. Tao Y, Li MQ, Ren JS, Qu XG. Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev. 2015;44(23):8636–63.

    Article  CAS  PubMed  Google Scholar 

  2. Lin ZK, Goswami N, Xue TT, Chai OJH, Xu HJ, Liu YX, Su Y, Xie JP. Engineering metal nanoclusters for targeted therapeutics: from targeting strategies to therapeutic applications. Adv Funct Mater. 2021;31(51):19.

    Article  Google Scholar 

  3. Fan Y, Liu SG, Yi Y, Rong HP, Zhang JT. Catalytic nanomaterials toward atomic levels for biomedical applications: from metal clusters to single-atom catalysts. ACS Nano. 2021;15(2):2005–37.

    Article  CAS  PubMed  Google Scholar 

  4. Srinivasulu YG, Yao QF, Goswami N, Xie JP. Interfacial engineering of gold nanoclusters for biomedical applications. Mater Horizons. 2020;7(10):2596–618.

    Article  Google Scholar 

  5. Yang G, Wang Z, Du F, Jiang F, Yuan X, Ying JY. Ultrasmall coinage metal nanoclusters as promising theranostic probes for biomedical applications. J Am Chem Soc. 2023;145(22):11879–98.

    Article  CAS  PubMed  Google Scholar 

  6. Yao Q, Wu Z, Liu Z, Lin Y, Yuan X, Xie J. Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chem Sci. 2021;12(1):99–127.

    Article  CAS  Google Scholar 

  7. Navarro M. Gold complexes as potential anti-parasitic agents. Coord Chem Rev. 2009;253(11–12):1619–26.

    Article  CAS  Google Scholar 

  8. Tiekink ERT. Gold compounds in medicine: potential anti-tumour agents. Gold Bull. 2003;36(4):117–24.

    Article  CAS  Google Scholar 

  9. Shaw CF. Gold-based therapeutic agents. Chem Rev. 1999;99(9):2589–600.

    Article  CAS  Google Scholar 

  10. Hickey JL, Ruhayel RA, Barnard PJ, Baker MV, Berners-Price SJ, Filipovska A. Mitochondria-targeted chemotherapeutics: the rational design of gold(I) N-heterocyclic carbene complexes that are selectively toxic to cancer cells and target protein selenols in preference to Thiols. J Am Chem Soc. 2008;130(38):12570–1.

    Article  CAS  PubMed  Google Scholar 

  11. Rigobello MP, Messori L, Marcon G, AgostinaCinellu M, Bragadin M, Folda A, Scutari G, Bindoli A. Gold complexes inhibit mitochondrial thioredoxin reductase: consequences on mitochondrial functions. J Inorg Biochem. 2004;98(10):1634–41.

    Article  CAS  PubMed  Google Scholar 

  12. McKeage MJ, Berners-Price SJ, Galettis P, Bowen RJ, Brouwer W, Ding L, Zhuang L, Baguley BC. Role of lipophilicity in determining cellular uptake and antitumour activity of gold phosphine complexes. Cancer Chemother Pharmacol. 2000;46(5):343–50.

    Article  CAS  PubMed  Google Scholar 

  13. Sanchez-Delgado RA, Anzellotti A. Metal complexes as chemotherapeutic agents against tropical diseases: trypanosomiasis, malaria and leishmaniasis. Mini Rev Med Chem. 2004;4(1):23–30.

    Article  CAS  PubMed  Google Scholar 

  14. Takano S, Tsukuda T. Chemically modified gold/silver superatoms as artificial elements at nanoscale: design principles and synthesis challenges. J Am Chem Soc. 2021;143(4):1683–98.

    Article  CAS  PubMed  Google Scholar 

  15. Kang X, Zhu MZ. Tailoring the photoluminescence of atomically precise nanoclusters. Chem Soc Rev. 2019;48(8):2422–57.

    Article  CAS  PubMed  Google Scholar 

  16. Yao QF, Yuan X, Chen TK, Leong DT, Xie JP. Engineering functional metal materials at the atomic level. Adv Mater. 2018;30(47):23.

    Google Scholar 

  17. Qian HF, Zhu MZ, Wu ZK, Jin RC. Quantum sized gold nanoclusters with atomic precision. Acc Chem Res. 2012;45(9):1470–9.

    Article  CAS  PubMed  Google Scholar 

  18. Zheng K, Xie J. Engineering ultrasmall metal nanoclusters as promising theranostic agents. Trends Chem. 2020;2(7):665–79.

    Article  CAS  Google Scholar 

  19. Zhang L, Wang E. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today. 2014;9(1):132–57.

    Article  CAS  Google Scholar 

  20. Li S, Wei J, Yao Q, Song X, Xie J, Yang H. Emerging ultrasmall luminescent nanoprobes for in vivo bioimaging. Chem Soc Rev. 2023;52(5):1672–96.

    Article  CAS  PubMed  Google Scholar 

  21. Porret E, Le Guével X, Coll J-L. Gold nanoclusters for biomedical applications: toward in vivo studies. J Mater Chem B. 2020;8(11):2216–32.

    Article  CAS  PubMed  Google Scholar 

  22. Qian S, Wang Z, Zuo Z, Wang X, Wang Q, Yuan X. Engineering luminescent metal nanoclusters for sensing applications. Coord Chem Rev. 2022;451:214268.

    Article  CAS  Google Scholar 

  23. Liu HL, Hong GS, Luo ZT, Chen JC, Chang JL, Gong M, He H, Yang J, Yuan X, Li LL, Mu XY, Wang JY, Mi WB, Luo J, Xie JP, Zhang XD. Atomic-precision gold clusters for NIR-II imaging. Adv Mater. 2019;31(46):9.

    Article  Google Scholar 

  24. Chen Y, Montana DM, Wei H, Cordero JM, Schneider M, Le Guevel X, Chen O, Bruns OT, Bawendi MG. Shortwave infrared in vivo imaging with gold nanoclusters. Nano Lett. 2017;17(10):6330–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luo ZT, Yuan X, Yu Y, Zhang QB, Leong DT, Lee JY, Xie JP. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J Am Chem Soc. 2012;134(40):16662–70.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou C, Long M, Qin Y, Sun X, Zheng J. Luminescent gold nanoparticles with efficient renal clearance. Angew Chem Int Ed. 2011;50(14):3168–72.

    Article  CAS  Google Scholar 

  27. Xie J, Zheng Y, Ying JY. Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc. 2009;131(3):888–9.

    Article  CAS  PubMed  Google Scholar 

  28. Edwards PP, Thomas JM. Gold in a metallic divided state—from faraday to present-day nanoscience. Angew Chem Int Ed. 2007;46(29):5480–6.

    Article  CAS  Google Scholar 

  29. Negishi Y, Nobusada K, Tsukuda T. Glutathione-protected gold clusters revisited: bridging the gap between Gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J Am Chem Soc. 2005;127(14):5261–70.

    Article  CAS  PubMed  Google Scholar 

  30. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. J Chem Soc Chem Commun. 1994;0(7):801–2.

    Article  CAS  Google Scholar 

  31. Zhang K, Chen FR, Wang L, Hu J. Second Near-Infrared (NIR-II) Window for Imaging-Navigated Modulation of Brain Structure and Function. Small. 2023;19(14):2206044.

    Article  CAS  Google Scholar 

  32. Xin Q, Ma H, Wang H, Zhang XD. Tracking tumor heterogeneity and progression with near-infrared II fluorophores. Exploration. 2023;3(2):20220011.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma H, Wang J, Zhang X. Near-infrared II emissive metal clusters: from atom physics to biomedicine. Coord Chem Rev. 2021;448: 214184.

    Article  CAS  Google Scholar 

  34. Li SH, Ma QP, Wang CL, Yang KD, Hong ZZ, Chen QS, Song JB, Song XR, Yang HH. Near-infrared II gold nanocluster assemblies with improved luminescence and biofate for in vivo ratiometric imaging of H2S. Anal Chem. 2022;94(5):2641–7.

    Article  CAS  PubMed  Google Scholar 

  35. Song XR, Zhu W, Ge XG, Li RF, Li SH, Chen X, Song JB, Xie JP, Chen XY, Yang HH. A new class of NIR-II gold nanocluster-based protein biolabels for in vivo tumor-targeted imaging. Angew Chem Int Ed. 2021;60(3):1306–12.

    Article  CAS  Google Scholar 

  36. Yu ZX, Musnier B, Wegner KD, Henry M, Chovelon B, Desroches-Castan A, Fertin A, Resch-Genger U, Bailly S, Coll JL, Usson Y, Josserand V, Le Guevel X. High-resolution shortwave infrared imaging of vascular disorders using gold nanoclusters. ACS Nano. 2020;14(4):4973–81.

    Article  CAS  PubMed  Google Scholar 

  37. Yu M, Xu J, Zheng J. Renal clearable luminescent gold nanoparticles: from the bench to the clinic. Angew Chem Int Ed. 2019;58(13):4112–28.

    Article  CAS  Google Scholar 

  38. Zhang X, Wu D, Shen X, Liu P, Fan F, Fan S. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials. 2012;33(18):4628–38.

    Article  CAS  PubMed  Google Scholar 

  39. Yu Y, Luo Z, Yu Y, Lee JY, Xie J. Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters. ACS Nano. 2012;6(9):7920–7.

    Article  CAS  PubMed  Google Scholar 

  40. Yang G, Mu X, Pan X, Tang Y, Yao Q, Wang Y, Jiang F, Du F, Xie J, Zhou X, Yuan X. Ligand engineering of Au44 nanoclusters for NIR-II luminescent and photoacoustic imaging-guided cancer photothermal therapy. Chem Sci. 2023;14(16):4308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pang ZY, Yan WX, Yang J, Li QZ, Guo Y, Zhou DJ, Jiang XY. Multifunctional gold nanoclusters for effective targeting, near-infrared fluorescence imaging, diagnosis, and treatment of cancer lymphatic metastasis. ACS Nano. 2022;16(10):16019–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang WL, Kong YF, Jiang J, Xie QQ, Huang Y, Li GN, Wu D, Zheng HZ, Gao M, Xu SJ, Pan YX, Li W, Ma RL, Wu MX, Li XH, Zuilhof H, Cai XM, Li RB. Engineering the protein corona structure on gold nanoclusters enables red-shifted emissions in the second near-infrared window for gastrointestinal imaging. Angew Chem Int Ed. 2020;59(50):22431–5.

    Article  CAS  Google Scholar 

  43. Zhao H, Wang H, Li HR, Zhang TC, Zhang J, Guo WH, Fu K, Du GQ. Magnetic and near-infrared-II fluorescence Au-Gd nanoclusters for imaging-guided sensitization of tumor radiotherapy. Nanoscale Adv. 2022;4(7):1815–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dan Q, Yuan Z, Zheng S, Ma HR, Luo WX, Zhang L, Su N, Hu DH, Sheng ZH, Li YJ. Gold nanoclusters-based NIR-II photosensitizers with catalase-like activity for boosted photodynamic therapy. Pharmaceutics. 2022;14(8):17.

    Article  Google Scholar 

  45. Tang L, Zeng XD, Zhou H, Gui CH, Luo QL, Zhou WY, Wu J, Li QQ, Li Y, Xiao YL. Theranostic gold nanoclusters for NIR-II imaging and photodynamic therapy. Chem Res Chin Univ. 2021;37(4):934–42.

    Article  CAS  Google Scholar 

  46. Wang J, Wang ZY, Li SJ, Zang SQ, Mak TCW. Carboranealkynyl-protected gold nanoclusters: size conversion and UV/Vis–NIR optical properties. Angew Chem Int Ed. 2021;133(11):6024–9.

    Article  Google Scholar 

  47. Wang G, Huang T, Murray RW, Menard L, Nuzzo RG. Near-IR luminescence of monolayer-protected metal clusters. J Am Chem Soc. 2005;127(3):812–3.

    Article  CAS  PubMed  Google Scholar 

  48. Li Q, Zeman CJ, Ma ZR, Schatz GC, Gu XW. Bright NIR-II photoluminescence in rod-shaped icosahedral gold nanoclusters. Small. 2021;17(11):7.

    Article  Google Scholar 

  49. Zhou M, Song YB. Origins of visible and near-infrared emissions in [Au25(SR)18]- nanoclusters. J Phys Chem Lett. 2021;12(5):1514–9.

    Article  CAS  PubMed  Google Scholar 

  50. Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D. Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)-thiolate shell. J Am Chem Soc. 2015;137(25):8244–50.

    Article  CAS  PubMed  Google Scholar 

  51. Wang SX, Meng XM, Das A, Li T, Song YB, Cao TT, Zhu XY, Zhu MZ, Jin RC. A 200-fold quantum yield boost in the photoluminescence of silver-doped AgxAu25-x nanoclusters: the 13th silver atom matters. Angew Chem Int Ed. 2014;53(9):2376–80.

    Article  CAS  Google Scholar 

  52. Huang Y, Chen K, Liu L, Ma HZ, Zhang XN, Tan KX, Li Y, Liu Y, Liu CL, Wang H, Zhang XD. Single atom-engineered NIR-II gold clusters with ultrahigh brightness and stability for acute kidney injury. Small. 2023. https://doi.org/10.1002/smll.202300145.

    Article  PubMed  Google Scholar 

  53. Zhao ZP, Chen HR, He K, Lin JC, Cai W, Sun YD, Liu JB. Glutathione-activated emission of ultrasmall gold nanoparticles in the second near-infrared window for imaging of early kidney injury. Anal Chem. 2023;95(11):5061–8.

    Article  CAS  PubMed  Google Scholar 

  54. Haye L, Diriwari PI, Alhalabi A, Gallavardin T, Combes A, Klymchenko AS, Hildebrandt N, Le Guével X, Reisch A. Enhancing near infrared II emission of gold nanoclusters via encapsulation in small polymer nanoparticles. Adv Opt Mater. 2022. https://doi.org/10.1002/adom.202201474.

    Article  Google Scholar 

  55. Bertorelle F, Wegner KD, Bakulic MP, Fakhouri H, Comby-Zerbino C, Sagar A, Bernado P, Resch-Genger U, Bonacic-Koutecky V, Le Guevel X, Antoine R. Tailoring the NIR-II photoluminescence of single thiolated Au25 nanoclusters by selective binding to proteins. Chem-Eur J. 2022;28(39):8.

    Google Scholar 

  56. Wen Y, Long ZQ, Huo FJ, Yin CX. Novel strategy for accurate tumor labeling: endogenous metabolic imaging through metabolic probes. Sci China Chem. 2022;65(12):2517–27.

    Article  CAS  Google Scholar 

  57. Crosby D, Bhatia S, Brindle KM, Coussens LM, Dive C, Emberton M, Esener S, Fitzgerald RC, Gambhir SS, Kuhn P, Rebbeck TR, Balasubramanian S. Early detection of cancer. Science. 2022;375(6586):eaay9040.

    Article  CAS  PubMed  Google Scholar 

  58. Hong B, Zu Y. Detecting circulating tumor cells: current challenges and new trends. Theranostics. 2013;3(6):377–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhu H, Fan JL, Du JJ, Peng XJ. Fluorescent probes for sensing and imaging within specific cellular organelles. Acc Chem Res. 2016;49(10):2115–26.

    Article  CAS  PubMed  Google Scholar 

  60. Weissleder R, Schwaiger MC, Gambhir SS, Hricak H. Imaging approaches to optimize molecular therapies. Sci Transl Med. 2016;8(355):7.

    Article  Google Scholar 

  61. Ueno T, Nagano T. Fluorescent probes for sensing and imaging. Nat Methods. 2011;8(8):642–5.

    Article  CAS  PubMed  Google Scholar 

  62. Li YL, Hung WC. Reprogramming of sentinel lymph node microenvironment during tumor metastasis. J Biomed Sci. 2022;29(1):1–15.

    Article  Google Scholar 

  63. Heerdt AS. Lymphatic mapping and sentinel lymph node biopsy for breast cancer. JAMA Oncol. 2018;4(3):431.

    Article  PubMed  Google Scholar 

  64. Lee WC, Kopetz S, Wistuba II, Zhang J. Metastasis of cancer: when and how? Ann Oncol. 2017;28(9):2045–7.

    Article  PubMed  Google Scholar 

  65. Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559–64.

    Article  CAS  PubMed  Google Scholar 

  66. Tian R, Ma HL, Zhu SJ, Lau J, Ma R, Liu YJ, Lin LS, Chandra S, Wang S, Zhu XF, Deng HZ, Niu G, Zhang MX, Antaris AL, Hettie KS, Yang B, Liang YY, Chen XY. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater. 2020;32(11):10.

    Google Scholar 

  67. Li CY, Torres VC, Tichauer KM. Noninvasive detection of cancer spread to lymph nodes: A review of molecular imaging principles and protocols. J Surg Oncol. 2018;118(2):301–14.

    Article  PubMed  Google Scholar 

  68. Baghdasaryan A, Wang F, Ren F, Ma Z, Li J, Zhou X, Grigoryan L, Xu C, Dai H. Phosphorylcholine-conjugated gold-molecular clusters improve signal for Lymph Node NIR-II fluorescence imaging in preclinical cancer models. Nat Commun. 2022;13(1):5613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhou ZX, Lu ZR. Molecular imaging of the tumor microenvironment. Adv Drug Deliv Rev. 2017;113:24–48.

    Article  CAS  PubMed  Google Scholar 

  70. Chen LY, Wang CW, Yuan ZQ, Chang HT. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem. 2015;87(1):216–29.

    Article  CAS  PubMed  Google Scholar 

  71. Chen LL, Lyu Y, Zhang X, Zheng LT, Li QQ, Ding D, Chen FM, Liu YH, Li W, Zhang YT, Huang QL, Wang ZQ, Xie TT, Zhang Q, Sima Y, Li K, Xu S, Ren TB, Xiong MY, Wu Y, Song JB, Yuan L, Yang HH, Zhang XB, Tan WH. Molecular imaging: design mechanism and bioapplications. Sci China Chem. 2023. https://doi.org/10.1007/s11426-022-1461-3.

    Article  Google Scholar 

  72. Fang H, Yu H, Lu Q, Fang X, Zhang Q, Zhang J, Zhu L, Ma Q. A new ratiometric fluorescent probe for specific monitoring of hROS under physiological conditions using boric acid-protected L-DOPA gold nanoclusters. Anal Chem. 2020;92(19):12825–32.

    Article  CAS  PubMed  Google Scholar 

  73. Ju E, Liu Z, Du Y, Tao Y, Ren J, Qu X. Heterogeneous assembled nanocomplexes for ratiometric detection of highly reactive oxygen species in vitro and in vivo. ACS Nano. 2014;8(6):6014–23.

    Article  CAS  PubMed  Google Scholar 

  74. Bai XL, Xu SY, Wang LY. Full-range pH stable Au-clusters in nanogel for confinement-enhanced emission and improved sulfide sensing in living cells. Anal Chem. 2018;90(5):3270–5.

    Article  CAS  PubMed  Google Scholar 

  75. Xiang H, He SY, Zhao G, Zhang MT, Lin J, Yang LN, Liu HL. Gold nanocluster-based ratiometric probe with surface structure regulation-triggered sensing of hydrogen sulfide in living organisms. ACS Appl Mater Interfaces. 2023;15(10):12643–52.

    Article  CAS  PubMed  Google Scholar 

  76. Chen TT, Hu YH, Cen Y, Chu X, Lu Y. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J Am Chem Soc. 2013;135(31):11595–602.

    Article  CAS  PubMed  Google Scholar 

  77. Hu SQ, Huang LX, Zhou LY, Wu TC, Zhao SL, Zhang LL. Single-excitation triple-emission down-/up-conversion nanoassemblies for tumor microenvironment-enhanced ratiometric NIR-II fluorescence imaging and chemo-/photodynamic combination therapy. Anal Chem. 2023;95(7):3830–9.

    Article  CAS  PubMed  Google Scholar 

  78. Liang M, Hu Q, Yi SX, Chi YJ, Xiao Y. Development of an Au nanoclusters based activatable nanoprobe for NIR-II fluorescence imaging of gastric acid. Biosens Bioelectron. 2023;224:9.

    Article  Google Scholar 

  79. Yang J, Wang T, Zhao LN, Rajasekhar VK, Joshi S, Andreou C, Pal S, Hsu HT, Zhang HW, Cohen IJ, Huang RM, Hendrickson RC, Miele MM, Pei WB, Brendel MB, Healey JH, Chiosis G, Kircher MF. Gold/alpha-lactalbumin nanoprobes for the imaging and treatment of breast cancer. Nat Biomed Eng. 2020;4(7):686–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Loynachan CN, Soleimany AP, Dudani JS, Lin YY, Najer A, Bekdemir A, Chen Q, Bhatia SN, Stevens MM. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat Nanotechnol. 2019;14(9):883–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang XY, Du BJ, Zheng J. Glutathione-mediated biotransformation in the liver modulates nanoparticle transport. Nat Nanotechnol. 2019;14(9):874–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. de Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17(8):457–74.

    Article  PubMed  Google Scholar 

  83. Tu CY, Das S, Baker AB, Zoldan J, Suggs LJ. Nanoscale strategies: treatment for peripheral vascular disease and critical limb ischemia. ACS Nano. 2015;9(4):3436–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang Y, Rosenberg GA. Blood-brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke. 2011;42(11):3323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rosell A, Cuadrado E, Ortega-Aznar A, Hernandez-Guillamon M, Lo EH, Montaner J. MMP-9-Positive neutrophil infiltration is associated to blood-brain barrier breakdown and basal lamina type IV collagen degradation during hemorrhagic transformation after human ischemic stroke. Stroke. 2008;39(4):1121–6.

    Article  CAS  PubMed  Google Scholar 

  86. Viallard C, Larrivee B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis. 2017;20(4):409–26.

    Article  CAS  PubMed  Google Scholar 

  87. Li DL, Liu Q, Qi QR, Shi H, Hsu EC, Chen WY, Yuan WL, Wu YF, Lin SE, Zeng YT, Xiao ZY, Xu LY, Zhang YR, Stoyanova T, Jia W, Cheng Z. Gold nanoclusters for NIR-II fluorescence imaging of bones. Small. 2020;16(43):9.

    Google Scholar 

  88. Zou D, Lin R, Han Y, Jia J, Zhou G, Zhang H, Ge K. Lanthanum promoting bone formation by regulating osteogenesis, osteoclastogenesis and angiogenesis. J Rare Earths. 2023. https://doi.org/10.1016/j.jre.2023.01.019.

    Article  Google Scholar 

  89. Wu P, Siegwart DJ, Xiong H. Recent advances in the targeted fluorescent probes for the detection of metastatic bone cancer. Sci China Chem. 2021;64(8):1283–96.

    Article  CAS  Google Scholar 

  90. Zaheer A, Lenkinski RE, Mahmood A, Jones AG, Cantley LC, Frangioni JV. In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol. 2001;19(12):1148–54.

    Article  CAS  PubMed  Google Scholar 

  91. Sun WT, Ge K, Jin Y, Han Y, Zhang HS, Zhou GQ, Yang XJ, Liu DD, Liu HF, Liang XJ, Zhang JC. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano. 2019;13(7):7556–67.

    Article  CAS  PubMed  Google Scholar 

  92. Xiong H, Zuo H, Yan YF, Occhialini G, Zhou KJ, Wan YH, Siegwart DJ. High-contrast fluorescence detection of metastatic breast cancer including bone and liver micrometastases via size-controlled pH-activatable water-soluble probes. Adv Mater. 2017;29(29):10.

    Article  Google Scholar 

  93. Li CY, Zhang YJ, Chen GC, Hu F, Zhao K, Wang QB. Engineered multifunctional nanomedicine for simultaneous stereotactic chemotherapy and inhibited osteolysis in an orthotopic model of bone metastasis. Adv Mater. 2017;29(13):7.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Program of China (2020YFA0709900), the National Natural Science Foundation of China (22027805, 22274024), the Major Project of Science and Technology of Fujian Province (2020HZ06006), the Young Elite Scientist Sponsorship Program by CAST (YESS20200110), and China Postdoctoral Science Foundation (2022M720737, 2021T140117).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shihua Li or Xiaorong Song.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, S., Liu, Y., Tong, S. et al. Emerging NIR-II Luminescent Gold Nanoclusters for In Vivo Bioimaging. J. Anal. Test. 7, 260–271 (2023). https://doi.org/10.1007/s41664-023-00256-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-023-00256-0

Keywords

Navigation