Skip to main content
Log in

A Method for Simultaneous Determination of 14 Carbonyl-Steroid Hormones in Human Serum by Ultra High Performance Liquid Chromatography–Tandem Mass Spectrometry

  • Original Paper
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

An improved method is described for the fast and sensitive determination of multiple endogenous steroid hormones in steroidogenic pathway by liquid chromatography–tandem mass spectrometry (LC–MS/MS), in which serum samples, after a simple protein precipitation and a derivatization by 2-hydrazinopyridine (HP), were subjected to LC–MS analysis. The protein precipitation of serum samples is achieved via adding acetonitrile, while the derivatization of endogenous steroid hormones in serum samples after protein precipitation is performed using 2-hydrazinopyridine as a derivatization reagent. The derivatives of the steroid hormones exhibit good detection sensitivity in LC–MS analysis. Linearity range of the improved method for the target steroid hormones is in two orders of magnitude and the correlation coefficients (r) are in the range from 0.9885 to 0.9998. The limits of detection (signal/noise = 3) range from 0.07 to 65.26 ng/mL. The recoveries are between 80.2 and 116.4% with acceptable intra- and inter-day relative standard deviations (RSDs) ranging from 0.3 to 18.9%. The improved method can be applied to explore the differences of steroid hormones between healthy controls and polycystic ovary syndrome patients.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ceglarek U, et al. Rapid quantification of steroid patterns in human serum by on-line solid phase extraction combined with liquid chromatography-triple quadrupole linear ion trap mass spectrometry. Clin Chim Acta. 2009;401(1–2):114–8.

    Article  CAS  Google Scholar 

  2. Deng YY, et al. Steroid hormone profiling in obese and nonobese women with polycystic ovary syndrome. Sci Rep. 2017;7(1):14156.

    Article  Google Scholar 

  3. Li AD, et al. Follicular hyperandrogenism and insulin resistance in polycystic ovary syndrome patients with normal circulating testosterone levels. J Biomed Res. 2018;32(3):208–14.

    CAS  PubMed Central  Google Scholar 

  4. Kamboj MK, Bonny AE. Polycystic ovary syndrome in adolescence: diagnostic and therapeutic strategies. Transl Pediatr. 2017;6(4):248–55.

    Article  Google Scholar 

  5. Lee YH, et al. Welsh onion root (Allium fistulosum) restores ovarian functions from letrozole induced-polycystic ovary syndrome. Nutrients. 2018;10(10):1430.

    Article  Google Scholar 

  6. Shaaban Z, et al. Pathophysiological mechanisms of gonadotropins- and steroid hormones-related genes in etiology of polycystic ovary syndrome. Iran J Basic Med Sci. 2019;22(1):3–16.

    PubMed  PubMed Central  Google Scholar 

  7. Stanczyk FZ, Clarke NJ. Advantages and challenges of mass spectrometry assays for steroid hormones. J Steroid Biochem Mol Biol. 2010;121(3–5):491–5.

    Article  CAS  Google Scholar 

  8. Krone N, et al. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J Steroid Biochem Mol Biol. 2010;121(3–5):496–504.

    Article  CAS  Google Scholar 

  9. Blue SW, et al. Simultaneous quantitation of multiple contraceptive hormones in human serum by LC-MS/MS. Contraception. 2018;97(4):363–9.

    Article  CAS  Google Scholar 

  10. Khedr A, Alandal AM. Liquid chromatography-tandem mass spectrometric analysis of ten estrogen metabolites at sub-picogram levels in breast cancer women. J Chromatogr B. 2016;1031:181–8.

    Article  CAS  Google Scholar 

  11. Peitzsch M, et al. An LC-MS/MS method for steroid profiling during adrenal venous sampling for investigation of primary aldosteronism. J Steroid Biochem Mol Biol. 2015;145:75–84.

    Article  CAS  Google Scholar 

  12. Caron P, Turcotte V, Guillemette C. A chromatography/tandem mass spectrometry method for the simultaneous profiling of ten endogenous steroids, including progesterone, adrenal precursors, androgens and estrogens, using low serum volume. Steroids. 2015;104:16–24.

    Article  CAS  Google Scholar 

  13. Koal T, et al. Standardized LC-MS/MS based steroid hormone profile-analysis. J Steroid Biochem Mol Biol. 2012;129(3–5):129–38.

    Article  CAS  Google Scholar 

  14. Licea-Perez H, et al. Development of a highly sensitive and selective UPLC/MS/MS method for the simultaneous determination of testosterone and 5 alpha-dihydrotestosterone in human serum to support testosterone replacement therapy for hypogonadism. Steroids. 2008;73(6):601–10.

    Article  CAS  Google Scholar 

  15. Nishio T, et al. Development and application of electrospray-active derivatization reagents for hydroxysteroids. J Pharm Biomed Anal. 2007;44(3):786–95.

    Article  CAS  Google Scholar 

  16. Leinonen A, Kuuranne T, Kostiainen R. Liquid chromatography/mass spectrometry in anabolic steroid analysis–optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. J Mass Spectrom. 2002;37(7):693–8.

    Article  CAS  Google Scholar 

  17. Yun-Qing H, et al. Use of isotope mass probes for metabolic analysis of the jasmonate biosynthetic pathway. Analyst. 2011;136(7):1515–22.

    Article  Google Scholar 

  18. Ye T, et al. Metabolic analysis of the melatonin biosynthesis pathway using chemical labeling coupled with liquid chromatography-mass spectrometry. J Pineal Res. 2019;66:e12531.

    Article  Google Scholar 

  19. Zhu QF, et al. Comprehensive screening and identification of fatty acid esters of hydroxy fatty acids in plant tissues by chemical isotope labeling-assisted liquid chromatography-mass spectrometry. Anal Chem. 2018;90(16):10056–63.

    Article  CAS  Google Scholar 

  20. Higashi T, et al. Salivary chenodeoxycholic acid and its glycine-conjugate: Their determination method using LC–MS/MS and variation of their concentrations with increased saliva flow rate. Steroids. 2010;75(4):338–45.

    Article  CAS  Google Scholar 

  21. Im E, et al. Simultaneous determination of androgens and prostaglandins in human urine using ultra-high-performance liquid chromatography-tandem mass spectrometry. J Chromatogr B. 2019;1109:45–53.

    Article  CAS  Google Scholar 

  22. Hala D, et al. Quantification of 2-hydrazinopyridine derivatized steroid hormones in fathead minnow ( Pimephales promelas ) blood plasma using LC-ESI+/MS/MS. J Chromatogr B. 2011;879(9–10):591–8.

    Article  CAS  Google Scholar 

  23. Shibayama Y, et al. Liquid chromatography-tandem mass spectrometric method for determination of salivary 17alpha-hydroxyprogesterone: a noninvasive tool for evaluating efficacy of hormone replacement therapy in congenital adrenal hyperplasia. J Chromatogr B. 2008;867(1):49–56.

    Article  CAS  Google Scholar 

  24. Higashi TT, Nishio N, Shimada K. Alternative procedure for charged derivatization to enhance detection responses of steroids in electrospray ionization-MS. Chem Pharm Bull. 2007;55(4):662–5.

    Article  CAS  Google Scholar 

  25. Lionetto L, et al. LC-MS/MS simultaneous analysis of allopregnanolone, epiallopregnanolone, pregnanolone, dehydroepiandrosterone and dehydroepiandrosterone 3-sulfate in human plasma. Bioanalysis. 2017;9(6):527–39.

    Article  CAS  Google Scholar 

  26. Guo N, et al. Stable isotope labeling—liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids. Anal Chim Acta. 2016;905:106–14.

    Article  CAS  Google Scholar 

  27. Rossi C, et al. Serum steroid profiling for congenital adrenal hyperplasia using liquid chromatography-tandem mass spectrometry. Clin Chim Acta. 2010;411(4):222–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Key R&D Program of China (2018YFA0900400), the National Natural Science Foundation of China (21635006, 31670373, 21721005, 21904099), and the Postdoctoral Science Foundation of China (Grant 2018M642893).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan-Zhen Zhang or Yu-Qi Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 186 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, YL., Hong, ZD., Zhang, TY. et al. A Method for Simultaneous Determination of 14 Carbonyl-Steroid Hormones in Human Serum by Ultra High Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Test. 4, 1–12 (2020). https://doi.org/10.1007/s41664-020-00120-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-020-00120-5

Keywords

Navigation