Skip to main content
Log in

RETRACTED ARTICLE: Nanozyme Based Detection of Heavy Metal Ions and its Challenges: A Minireview

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

This article was retracted on 23 March 2020

This article has been updated

Abstract

Naznozymes have become an important alternative to natural enzymes for many sensing applications, due to their relatively high stability, easy synthesis, and cost-effectiveness. Nanozyme-based assays, especially paper-based assays are portable, and therefore, are convenient for use in field operations, especially in remote parts of the world. Decreasing water levels, depletion of water resources, and large scale mining create the need for rapid detection of heavy metal ions in various water samples. In comparison with traditional methods of heavy metal ion detection, nanozyme-based systems enable rapid and cheap screening on the spot with a very simple instrument such as a UV–Vis absorption spectrophotometer. The sensing mechanism of a nanozyme-based sensor is highly dependent on its surface properties. They often encounter selectivity issues, unlike natural enzyme-based assays. Therefore, different types of target recognition and inhibition/enhancement mechanisms have been reported to achieve high selectivity. In this short review, we mainly focus our discussion on various interaction of the heavy metal ions with the nanozyme, and their responses towards the catalytic activity in the sensing of target metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Reproduced from Ref. [16] with permission from The Royal Society of Chemistry

Fig. 2

Reproduced from Ref. [66] with permission from The Royal Society of Chemistry

Fig. 3

Reproduced from Ref. [75]

Fig. 4

Reproduced with permission from [63]

Fig. 5

Reproduced from Ref. [79] with permission from American Chemical Society

Similar content being viewed by others

Change history

  • 23 March 2020

    The publisher has retracted this article [1] due to an operational error during the publication process.

References

  1. Winkler M, Geier M, Hanlon SP, Nidetzky B, Glieder A. Human enzymes for organic synthesis. Angew Chem Int. 2018;57:13406–23.

    CAS  Google Scholar 

  2. Küchler A, Yoshimoto M, Luginbühl S, Mavelli F, Walde P. Enzymatic reactions in confined environments. Nat Nanotechnol. 2016;11:409–20.

    PubMed  Google Scholar 

  3. Nguyen HH, Lee SH, Lee UJ, Fermin CD, Kim M. Immobilized enzymes in biosensor. Appl Mater. 2019;12(1):121.

    CAS  Google Scholar 

  4. Reetz MT. What are the limitations of enzymes in synthetic organic chemistry? Chem Rec. 2016;16:2449–59.

    CAS  PubMed  Google Scholar 

  5. Wu J, Wang X, Wang Q, Lou Z, Li S, Zhu Y, et al. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem Soc Rev. 2019;48:1004–76.

    CAS  PubMed  Google Scholar 

  6. Zhong Y, Tang X, Li J, Lan Q, Min L, Ren C, et al. A nanozyme tag enabled chemiluminescence imaging immunoassay for multiplexed cytokine monitoring. Chem Commun. 2018;54:13813–6.

    CAS  Google Scholar 

  7. Ganganboina AB, Doong R-A. The biomimic oxidase activity of layered V2O5 nanozyme for rapid and sensitive nanomolar detection of glutathione. Sens Actuators B. 2018;273:1179–86.

    CAS  Google Scholar 

  8. Mu J, Zhao X, Li J, Yang E-C, Zhao X-J. Novel hierarchical NiO nanoflowers exhibiting intrinsic superoxide dismutase-like activity. J Mater Chem B. 2016;4:5217–21.

    CAS  PubMed  Google Scholar 

  9. Sloan-Dennison S, Laing S, Shand NC, Graham D, Faulds K. A novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS. Analyst. 2017;142:2484–90.

    CAS  PubMed  Google Scholar 

  10. He Y, Li X, Xu X, Pan J, Niu X. A cobalt-based polyoxometalate nanozyme with high peroxidase-mimicking activity at neutral pH for one-pot colorimetric analysis of glucose. J Mater Chem B. 2018;6:5750–5.

    CAS  PubMed  Google Scholar 

  11. Comotti M, Della Pina C, Matarrese R, Rossi M. The catalytic activity of “naked” gold particles. Angew Chem Int. 2004;43:5812–5.

    CAS  Google Scholar 

  12. Xi J, Wang W, Da L, Zhang J, Fan L, Gao L. Au-PLGA hybrid nanoparticles with catalase-mimicking and near-infrared photothermal activities for photoacoustic imaging-guided cancer therapy. ACS Biomater Sci Eng. 2018;4:1083–91.

    CAS  PubMed  Google Scholar 

  13. Li W, Wang J, Zhu J, Zheng Y-Q. Co3O4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione. J Mater Chem B. 2018;6:6858–64.

    CAS  PubMed  Google Scholar 

  14. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol. 2007;2:577–83.

    CAS  PubMed  Google Scholar 

  15. Han KN, Choi J-S, Kwon J. Gold nanozyme-based paper chip for colorimetric detection of mercury ions. Sci Rep. 2017;7:2806.

    PubMed  PubMed Central  Google Scholar 

  16. Tseng C-W, Chang H-Y, Chang J-Y, Huang C-C. Detection of mercury ions based on mercury-induced switching of enzyme-like activity of platinum/gold nanoparticles. Nanoscale. 2012;4:6823–30.

    CAS  PubMed  Google Scholar 

  17. Lin S, Zhang Y, Cao W, Wang X, Qin L, Zhou M, et al. Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics. Dalton Trans. 2019;48:1993–9.

    CAS  PubMed  Google Scholar 

  18. Guo QJ, Pan ZY, Men C, Lv WY, Zou HY, Huang CZ. Visual detection of cancer cells by using in situ grown functional Cu2−xSe/reduced graphene oxide hybrids acting as an efficient nanozyme. Analyst. 2019;144:716–21.

    CAS  PubMed  Google Scholar 

  19. Ko E, Tran V-K, Son SE, Hur W, Choi H, Seong GH. Characterization of Au@PtNP/GO nanozyme and its application to electrochemical microfluidic devices for quantification of hydrogen peroxide. Sens Actuators B. 2019;294:166–76.

    CAS  Google Scholar 

  20. Yu J, Ma D, Mei L, Gao Q, Yin W, Zhang X, et al. Peroxidase-like activity of MoS2 nanoflakes with different modifications and their application for H2O2 and glucose detection. J Mater Chem B. 2018;6:487–98.

    CAS  PubMed  Google Scholar 

  21. Li D, Liu B, Huang P-JJ, Zhang Z, Liu J. Highly active fluorogenic oxidase-mimicking NiO nanozymes. Chem Commun. 2018;54:12519–22.

    CAS  Google Scholar 

  22. Zhang H, Liang X, Han L, Li F. “Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis. Small. 2018;14:1803256.

    Google Scholar 

  23. Weerathunge P, Ramanathan R, Torok VA, Hodgson K, Xu Y, Goodacre R, et al. Ultrasensitive colorimetric detection of murine norovirus using nanozyme aptasensor. Anal Chem. 2019;91:3270–6.

    CAS  PubMed  Google Scholar 

  24. Chen J, Shu Y, Li H, Xu Q, Hu X. Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta. 2018;189:254–61.

    CAS  PubMed  Google Scholar 

  25. Miao L, Jiao L, Tang Q, Li H, Zhang L, Wei Q. A nanozyme-linked immunosorbent assay for dual-modal colorimetric and ratiometric fluorescent detection of cardiac troponin I. Sens Actuators B. 2019;288:60–4.

    CAS  Google Scholar 

  26. Kuo P-C, Lien C-W, Mao J-Y, Unnikrishnan B, Chang H-T, Lin H-J, et al. Detection of urinary spermine by using silver-gold/silver chloride nanozymes. Anal Chim Acta. 2018;1009:89–97.

    CAS  PubMed  Google Scholar 

  27. Liu R, Zuo L, Huang X, Liu S, Yang G, Li S, et al. Colorimetric determination of lead(II) or mercury(II) based on target induced switching of the enzyme-like activity of metallothionein-stabilized copper nanoclusters. Microchim Acta. 2019;186:250.

    Google Scholar 

  28. Liu Y, Zheng Y, Ding D, Guo R. Switching peroxidase-mimic activity of protein stabilized platinum nanozymes by sulfide ions: substrate dependence, mechanism, and detection. Langmuir. 2017;33:13811–20.

    CAS  PubMed  Google Scholar 

  29. Karim MN, Singh M, Weerathunge P, Bian P, Zheng R, Dekiwadia C, et al. Visible-light-triggered reactive-oxygen-species-mediated antibacterial activity of peroxidase-mimic CuO nanorods. ACS Appl Nano Mater. 2018;1:1694–704.

    CAS  Google Scholar 

  30. Dehghani Z, Hosseini M, Mohammadnejad J, Bakhshi B, Rezayan AH. Colorimetric aptasensor for Campylobacter jejuni cells by exploiting the peroxidase like activity of Au@Pd nanoparticles. Microchim Acta. 2018;185:448.

    Google Scholar 

  31. Wang X, Qin L, Zhou M, Lou Z, Wei H. Nanozyme sensor arrays for detecting versatile analytes from small molecules to proteins and cells. Anal Chem. 2018;90:11696–702.

    CAS  PubMed  Google Scholar 

  32. Dai D, Liu H, Ma H, Huang Z, Gu C, Zhang M. In-situ synthesis of Cu2OAu nanocomposites as nanozyme for colorimetric determination of hydrogen peroxide. J Alloys Compd. 2018;747:676–83.

    CAS  Google Scholar 

  33. Han L, Shi J, Liu A. Novel biotemplated MnO2 1D nanozyme with controllable peroxidase-like activity and unique catalytic mechanism and its application for glucose sensing. Sens Actuators B Chem. 2017;252:919–26.

    CAS  Google Scholar 

  34. Karim MN, Anderson SR, Singh S, Ramanathan R, Bansal V. Nanostructured silver fabric as a free-standing NanoZyme for colorimetric detection of glucose in urine. Biosens Bioelectron. 2018;110:8–15.

    CAS  PubMed  Google Scholar 

  35. Bhagat S, Srikanth Vallabani NV, Shutthanandan V, Bowden M, Karakoti AS, Singh S. Gold core/ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. J Colloid Interface Sci. 2018;513:831–42.

    CAS  PubMed  Google Scholar 

  36. Kumar S, Bhushan P, Bhattacharya S. Facile synthesis of Au@Ag–hemin decorated reduced graphene oxide sheets: a novel peroxidase mimetic for ultrasensitive colorimetric detection of hydrogen peroxide and glucose. RSC Adv. 2017;7:37568–77.

    CAS  Google Scholar 

  37. Guo Y, Yan L, Zhang R, Ren H, Liu A. CoO-supported ordered mesoporous carbon nanocomposite based nanozyme with peroxidase-like activity for colorimetric detection of glucose. Process Biochem. 2019;81:92–8.

    CAS  Google Scholar 

  38. Cho S, Lee SM, Shin HY, Kim MS, Seo YH, Cho YK, et al. Highly sensitive colorimetric detection of allergies based on an immunoassay using peroxidase-mimicking nanozymes. Analyst. 2018;143:1182–7.

    CAS  PubMed  Google Scholar 

  39. Zhuge W, Tan X, Zhang R, Li H, Zheng G. Fluorescent and colorimetric immunoassay of nuclear matrix protein 22 enhanced by porous Pd nanoparticles. Chin Chem Lett. 2019. https://doi.org/10.1016/j.cclet.2019.02.026.

    Article  Google Scholar 

  40. Cheng N, Song Y, Zeinhom MMA, Chang Y-C, Sheng L, Li H, et al. Nanozyme-mediated dual immunoassay integrated with smartphone for use in simultaneous detection of pathogens. ACS Appl Mater Interfaces. 2017;9:40671–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Oh S, Kim J, Tran VT, Lee DK, Ahmed SR, Hong JC, et al. Magnetic nanozyme-linked immunosorbent assay for ultrasensitive influenza A virus detection. ACS Appl Mater Interfaces. 2018;10:12534–43.

    CAS  PubMed  Google Scholar 

  42. Farka Z, Čunderlová V, Horáčková V, Pastucha M, Mikušová Z, Hlaváček A, et al. Prussian blue nanoparticles as a catalytic label in a sandwich nanozyme-linked immunosorbent assay. Anal Chem. 2018;90:2348–54.

    CAS  PubMed  Google Scholar 

  43. Chen W, Fang X, Li H, Cao H, Kong J. A simple paper-based colorimetric device for rapid mercury(II) assay. Sci Rep. 2016;6:31948.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu B, Liu J. Surface modification of nanozymes. Nano Res. 2017;10:1125–48.

    CAS  Google Scholar 

  45. Jan TA, Azam M, Siddiqui K, Ali A, Choi I, Haq MQ. Heavy metals and human health: mechanistic insight into toxicity and counter defense system of antioxidants. Int J Mol Sci. 2015;16:29592–630.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014;7:60–72.

    PubMed  PubMed Central  Google Scholar 

  47. Pohl P. Determination of metal content in honey by atomic absorption and emission spectrometries. TrAC Trends Anal Chem. 2009;28:117–28.

    CAS  Google Scholar 

  48. Hu P, Wang X, Yang L, Yang H, Tang Y, Luo H, et al. Speciation of mercury by hydride generation ultraviolet atomization-atomic fluorescence spectrometry without chromatographic separation. Microchem J. 2018;143:228–33.

    CAS  Google Scholar 

  49. Day PL, Eckdahl SJ, Maleszewski JJ, Wright TC, Murray DL. Establishing human heart chromium, cobalt and vanadium concentrations by inductively coupled plasma mass spectrometry. J Trace Elem Med Biol. 2017;41:60–5.

    CAS  PubMed  Google Scholar 

  50. Yu X, He Q, Li Y, He H, Zhang J. Atomic fluorescence spectrometric detection of methylmercury in seawater at sub ng L−1 level by UV-induced atomization of gaseous methylethylmercury after NaBEt4 derivatization with purge and trap preconcentration and gas chromatography separation. Spectrochim Acta Part B. 2019;152:1–5.

    CAS  Google Scholar 

  51. Lu X, Zhao J, Liang X, Zhang L, Liu Y, Yin X, et al. The application and potential artifacts of zeeman cold vapor atomic absorption spectrometry in mercury stable isotope analysis. Environ Sci Technol Lett. 2019;6:165–70.

    CAS  Google Scholar 

  52. Wang Z, Tang W, Yu J, Zhang F, He P. Phytic acid@Ag-based all-solid-state ion selective electrode for potentiometric detection of Cu2+. J Electroanal Chem. 2019;835:137–42.

    CAS  Google Scholar 

  53. Ahmed MA. Determination of Na, K and Fe in Lactuca sativa by using atomic absorption spectrophotometric and flame photometry techniques. AJPS. 2017;17:1–6.

    Google Scholar 

  54. Zinoubi K, Majdoub H, Barhoumi H, Boufi S, Jaffrezic-Renault N. Determination of trace heavy metal ions by anodic stripping voltammetry using nanofibrillated cellulose modified electrode. J Electroanal Chem. 2017;799:70–7.

    CAS  Google Scholar 

  55. Kumar V, Singh DK, Mohan S, Bano D, Gundampati RK, Hasan SH. Green synthesis of silver nanoparticle for the selective and sensitive colorimetric detection of mercury (II) ion. J Photochem Photobiol B. 2017;168:67–77.

    CAS  PubMed  Google Scholar 

  56. Li S, Wei T, Tang M, Chai F, Qu F, Wang C. Facile synthesis of bimetallic Ag-Cu nanoparticles for colorimetric detection of mercury ion and catalysis. Sens Actuators B. 2018;255:1471–81.

    CAS  Google Scholar 

  57. Li X, Wu Z, Zhou X, Hu J. Colorimetric response of peptide modified gold nanoparticles: an original assay for ultrasensitive silver detection. Biosens Bioelectron. 2017;92:496–501.

    CAS  PubMed  Google Scholar 

  58. Hong SP, Kang SH, Kim DK, Kang BS. Eu3+-doped gadolinium oxide nanoparticles synthesized by chemical coprecipitation predicted by thermodynamic modeling. J Nanosci Nanotechnol. 2014;14:8296–304.

    CAS  PubMed  Google Scholar 

  59. Niu X, Zhong Y, Chen R, Wang F, Liu Y, Luo D. A “turn-on” fluorescence sensor for Pb2+ detection based on graphene quantum dots and gold nanoparticles. Sens Actuators B. 2018;255:1577–81.

    CAS  Google Scholar 

  60. Bian S, Shen C, Qian Y, Liu J, Xi F, Dong X. Facile synthesis of sulfur-doped graphene quantum dots as fluorescent sensing probes for Ag+ ions detection. Sens Actuators B. 2017;242:231–7.

    CAS  Google Scholar 

  61. Niu X, He Y, Li X, Zhao H, Pan J, Qiu F, et al. A peroxidase-mimicking nanosensor with Hg2+-triggered enzymatic activity of cysteine-decorated ferromagnetic particles for ultrasensitive Hg2+ detection in environmental and biological fluids. Sens Actuators B. 2019;281:445–52.

    CAS  Google Scholar 

  62. Liao H, Liu G, Liu Y, Li R, Fu W, Hu L. Aggregation-induced accelerating peroxidase-like activity of gold nanoclusters and their applications for colorimetric Pb2+ detection. Chem Commun. 2017;53:10160–3.

    CAS  Google Scholar 

  63. Liu Y, Ding D, Zhen Y, Guo R. Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens Bioelectron. 2017;92:140–6.

    CAS  PubMed  Google Scholar 

  64. Kora AJ, Rastogi L. Peroxidase activity of biogenic platinum nanoparticles: a colorimetric probe towards selective detection of mercuric ions in water samples. Sens Actuators B. 2018;254:690–700.

    CAS  Google Scholar 

  65. Zhang W, Niu X, Meng S, Li X, He Y, Pan J, et al. Histidine-mediated tunable peroxidase-like activity of nanosized Pd for photometric sensing of Ag+. Sens Actuators B. 2018;273:400–7.

    CAS  Google Scholar 

  66. Hsu C-L, Lien C-W, Harroun SG, Ravindranath R, Chang H-T, Mao J-Y, et al. Metal-deposited bismuth oxyiodide nanonetworks with tunable enzyme-like activity: sensing of mercury and lead ions. Mater Chem Front. 2017;1:893–9.

    CAS  Google Scholar 

  67. Huang L, Zhu Q, Zhu J, Luo L, Pu S, Zhang W, et al. Portable colorimetric detection of mercury(II) based on a non-noble metal nanozyme with tunable activity. Inorg Chem. 2019;58:1638–46.

    CAS  PubMed  Google Scholar 

  68. Sculfort S, Braunstein P. Intramolecular d10–d10 interactions in heterometallic clusters of the transition metals. Chem Soc Rev. 2011;40:2741–60.

    CAS  PubMed  Google Scholar 

  69. Krishnadas KR, Udayabhaskararao T, Choudhury S, Goswami N, Pal SK, Pradeep T. Luminescent AgAu alloy clusters derived from Ag nanoparticles—manifestations of tunable AuI–CuI metallophilic interactions. Eur J Inorg Chem. 2014;2014:908–16.

    CAS  Google Scholar 

  70. Chen P-C, Ma J-Y, Chen L-Y, Lin G-L, Shih C-C, Lin T-Y, et al. Photoluminescent AuCu bimetallic nanoclusters as pH sensors and catalysts. Nanoscale. 2014;6:3503–7.

    CAS  PubMed  Google Scholar 

  71. Deng H, He S, Lin X, Yang L, Lin Z, Chen R, Peng H, Chen W. Target-triggered inhibiting oxidase-mimicking activity of platinum nanoparticles for ultrasensitive colorimetric detection of silver ion. Chin Chem Lett. 2019;30:1659–62.

    CAS  Google Scholar 

  72. Peng C-F, Zhang Y-Y, Wang L-Y, Jin Z-Y, Shao G. Colorimetric assay for the simultaneous detection of Hg2+ and Ag+ based on inhibiting the peroxidase-like activity of core–shell Au@Pt nanoparticles. Anal Methods. 2017;9:4363–70.

    CAS  Google Scholar 

  73. Hsu C-L, Lien C-W, Wang C-W, Harroun SG, Huang C-C, Chang H-T. Immobilization of aptamer-modified gold nanoparticles on BiOCl nanosheets: tunable peroxidase-like activity by protein recognition. Biosens Bioelectron. 2016;75:181–7.

    CAS  PubMed  Google Scholar 

  74. Lien C-W, Yu P-H, Chang H-T, Hsu P-H, Wu T, Lin Y-W, Huang C-C, Lai J-Y. DNA engineered copper oxide-based nanocomposites with multiple enzyme-like activities for specific detection of mercury species in environmental and biological samples. Anal Chim Acta. 2019. https://doi.org/10.1016/j.aca.2019.08.009.

    Article  PubMed  Google Scholar 

  75. Wang Y-W, Wang M, Wang L, Xu H, Tang S, Yang H-H, et al. A simple assay for ultrasensitive colorimetric detection of Ag+ at picomolar levels using platinum nanoparticles. Sensors. 2017;17:2521.

    PubMed Central  Google Scholar 

  76. Liu Y, Xiang Y, Ding D, Guo R. Structural effects of amphiphilic protein/gold nanoparticle hybrid based nanozyme on peroxidase-like activity and silver-mediated inhibition. RSC Adv. 2016;6:112435–44.

    CAS  Google Scholar 

  77. Borthakur P, Darabdhara G, Das MR, Boukherroub R, Szunerits S. Solvothermal synthesis of CoS/reduced porous graphene oxide nanocomposite for selective colorimetric detection of Hg(II) ion in aqueous medium. Sens Actuators B. 2017;244:684–92.

    CAS  Google Scholar 

  78. Deng H-H, Luo B-Y, He S-B, Chen R-T, Lin Z, Peng H-P, Xia X-H, Chen W. Redox recycling-triggered peroxidase-like activity enhancement of bare gold nanoparticles for ultrasensitive colorimetric detection of rare-earth Ce3+ ion. Anal Chem. 2019;91:4039–46.

    CAS  PubMed  Google Scholar 

  79. Lien C-W, Tseng Y-T, Huang C-C, Chang H-T. Logic control of enzyme-like gold nanoparticles for selective detection of lead and mercury ions. Anal Chem. 2014;86:2065–72.

    CAS  PubMed  Google Scholar 

  80. Li C-R, Hai J, Fan L, Li S-L, Wang B-D, Yang Z-Y. Amplified colorimetric detection of Ag+ based on Ag+-triggered peroxidase-like catalytic activity of ZIF-8/GO nanosheets. Sens Actuators B. 2019;284:213–9.

    CAS  Google Scholar 

  81. Wu L-L, Qian Z-J, Xie Z-J, Zhang Y-Y, Peng C-F. Colorimetric detection of copper ions based on surface modification of silver/platinum cluster nanozyme. Chin J Anal Chem. 2017;45:471–6.

    CAS  Google Scholar 

  82. Mu J, Li J, Zhao X, Yang E-C, Zhao X-J. Novel urchin-like Co9S8 nanomaterials with efficient intrinsic peroxidase-like activity for colorimetric sensing of copper (II) ion. Sens Actuators B. 2018;258:32–41.

    CAS  Google Scholar 

  83. He Y, Niu X, Li L, Li X, Zhang W, Zhao H, Lan M, Pan J, Zhang X. Microwave-assisted fabrication of bimetallic PdCu nanocorals with enhanced peroxidase-like activity and efficiency for thiocyanate sensing. ACS Appl Nano Mater. 2018;1:2397–405.

    CAS  Google Scholar 

  84. Lien C-W, Unnikrishnan B, Harroun SG, Wang C-M, Chang J-Y, Chang H-T, Huang C-C. Visual detection of cyanide ions by membrane-based nanozyme assay. Biosens Bioelectron. 2018;102:510–7.

    CAS  PubMed  Google Scholar 

  85. Wen S-H, Zhong X-L, Wu Y-D, Liang R-P, Zhang L, Qiu J-D. Colorimetric assay conversion to highly sensitive electrochemical assay for bimodal detection of arsenate based on cobalt oxyhydroxide nanozyme via arsenate absorption. Anal Chem. 2019;91:6487–97.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan under Contract No. 107-2622-B-182-001-CC2, 107-2113-M-019-004-MY3, 107-2622-M-019-001-CC2 and 107-2627-M-007-007-MY3, University System of Taipei Joint Research Program under contract USTP-NTUT-NTOU-108-02, and the Center of Excellence for the Oceans, National Taiwan Ocean University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Ching Huang.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

The publisher has retracted this article due to an operational error during the publication process. The authors agree with this retraction.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unnikrishnan, B., Lien, CW. & Huang, CC. RETRACTED ARTICLE: Nanozyme Based Detection of Heavy Metal Ions and its Challenges: A Minireview. J. Anal. Test. 3, 206–218 (2019). https://doi.org/10.1007/s41664-019-00110-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-019-00110-2

Keywords

Navigation