Skip to main content

Advertisement

Log in

A Perspective on Data Processing in Super-resolution Fluorescence Microscopy Imaging

  • Review
  • Published:
Journal of Analysis and Testing Aims and scope Submit manuscript

Abstract

With super-resolution microscopy, we attempt to visualize (biological) structures and processes at the sub-cellular level (i.e., nanoscale). To obtain this information, the samples are labeled with fluorophores that have a stochastic on/off switching of their emissions, which help to overcome the optical diffraction limit of around 250 nm, related to the use of optical microscopes. However, nowadays, research focuses on the imaging of live cells and thicker samples. These investigations require a high amount of simultaneously active fluorophores (i.e., high-density imaging) and are challenging due to the collapse of the single-molecule localization techniques and the increased background in the image. Therefore, recent efforts have shifted towards the development of new ways to process the data. This publication gives an introduction to wide-field super-resolution fluorescence microscopy, explaining the concepts of the technique, and then gives an overview of the recently developed methods to provide super-resolution images for high-density data of live cells and ways to overcome the issues related to the imaging of these samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

(adapted from [23])

Fig. 4
Fig. 5
Fig. 6

The figure was adapted from [33]

Fig. 7
Fig. 8
Fig. 9
Fig. 10

The figure is adapted from [36]

Fig. 11
Fig. 12
Fig. 13
Fig. 14

The figure is adapted from [53]

Fig. 15

The figure was adapted from [60]

Fig. 16

Similar content being viewed by others

References

  1. Betzig E. Proposed method for molecular optical imaging. Opt Lett. 1995;20:237–9.

    Article  CAS  Google Scholar 

  2. Betzig E, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.

    Article  CAS  Google Scholar 

  3. Hell S, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19:780–2.

    Article  CAS  Google Scholar 

  4. Klar T, Jakobs S, Dyba M, Egner A, Hell S. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci USA. 2000;97:8206–10.

    Article  CAS  Google Scholar 

  5. Moerner W, Kador L. Optical detection and spectroscopy of single molecules in a solid. Phys Rev Lett. 1989;62:2535–8.

    Article  CAS  Google Scholar 

  6. Dickson R, Cubitt A, Tsien R, Moerner W. On/off blinking and switching behaviour of single molecules of green fluorescent protein. Nature. 1997;388:355–8.

    Article  CAS  Google Scholar 

  7. Novotny L, Hecht B. Principles of nano-optics. 2nd ed. Cambridge: Cambridge University Press; 2012.

    Book  Google Scholar 

  8. Abbe E. Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Für Mikrosk Anat. 1873;9:413–8.

    Article  Google Scholar 

  9. Strutt J. On the theory of optical images, with special reference to the microscope. Philos Mag. 1896;42:167–95.

    Article  Google Scholar 

  10. Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.

    Article  CAS  Google Scholar 

  11. Shroff H, Galbraith C, Galbraith J, Betzig E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods. 2008;5:417–23.

    Article  CAS  Google Scholar 

  12. Hell S. Toward fluorescence nanoscopy. Nat Biotechnol. 2003;21:1347–55.

    Article  CAS  Google Scholar 

  13. Hell S. Far-field optical nanoscopy. Science. 2007;316:1153–8.

    Article  CAS  Google Scholar 

  14. Ovesný M, Křížek P, Borkovec J, Svindrych Z, Hagen G. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinf Oxf Engl. 2014;30:2389–90.

    Article  Google Scholar 

  15. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci USA. 2009;106:22287–92.

    Article  CAS  Google Scholar 

  16. Holden S, Uphoff S, Kapanidis A. DAOSTORM: an algorithm for high- density super-resolution microscopy. Nat Methods. 2011;8:279–80.

    Article  CAS  Google Scholar 

  17. Ito S, et al. Restricted diffusion of guest molecules in polymer thin films on solid substrates as revealed by three-dimensional single-molecule tracking. Chem Commun Camb Engl. 2015;51:13756–9.

    Article  CAS  Google Scholar 

  18. Enderlein J. Positional and temporal accuracy of single molecule tracking. Single Mol. 2000;1:225–30.

    Article  CAS  Google Scholar 

  19. Kusumi A, Tsunoyama T, Hirosawa K, Kasai R, Fujiwara T. Tracking single molecules at work in living cells. Nat Chem Biol. 2014;10:524–32.

    Article  CAS  Google Scholar 

  20. Tsujita K, et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol. 2006;172:269–79.

    Article  CAS  Google Scholar 

  21. Li D, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science. 2015;349:aab3500.

    Article  Google Scholar 

  22. Habuchi S, et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc Natl Acad Sci USA. 2005;102:9511–6.

    Article  CAS  Google Scholar 

  23. Dedecker P, Mo G, Dertinger T, Zhang J. Widely accessible method for superresolution fluorescence imaging of living systems. Proc Natl Acad Sci USA. 2012;109:10909–14.

    Article  CAS  Google Scholar 

  24. Rust M, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods. 2006;3:793–6.

    Article  CAS  Google Scholar 

  25. Betzig E, et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science. 2006;313:1642–5.

    Article  CAS  Google Scholar 

  26. Hess S, Girirajan T, Mason M. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91:4258–72.

    Article  CAS  Google Scholar 

  27. Huang B, Bates M, Zhuang X. Super resolution fluorescence microscopy. Annu Rev Biochem. 2009;78:993–1016.

    Article  CAS  Google Scholar 

  28. Lin E, Alessio A. What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr. 2009;3:403–8.

    Article  Google Scholar 

  29. Mondal P. Temporal resolution in fluorescence imaging. Front Mol Biosci. 2014;1:1–10.

    Article  CAS  Google Scholar 

  30. Zhu L, Zhang W, Elnatan D, Huang B. Faster STORM using compressed sensing. Nat Methods. 2012;9:721–3.

    Article  CAS  Google Scholar 

  31. Yamanaka M, Smith N, Fujita K. Introduction to super-resolution microscopy. Microsc Oxf Engl. 2014;63:177–92.

    Article  Google Scholar 

  32. Min J, et al. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Sci Rep. 2014;4:srep04577.

    Google Scholar 

  33. Hugelier S, et al. Sparse deconvolution of high-density super-resolution images. Sci Rep. 2016;6:srep21413.

    Article  Google Scholar 

  34. Hugelier S, Eilers P, Devos O, Ruckebusch C. Improved superresolution microscopy imaging by sparse deconvolution with an interframe penalty. J Chemom. 2017;31:e2847.

    Article  Google Scholar 

  35. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc Natl Acad Sci USA. 2009;106:22287–92.

    Article  CAS  Google Scholar 

  36. Ruckebusch C, et al. Mapping pixel dissimilarity in wide-field super-resolution fluorescence microscopy. Anal Chem. 2015;87:4675–82.

    Article  CAS  Google Scholar 

  37. Cox S, et al. Bayesian localization microscopy reveals nanoscale podosome dynamics. Nat Methods. 2012;9:195–200.

    Article  CAS  Google Scholar 

  38. Rosten E, Jones G, Cox S. ImageJ plug-in for Bayesian analysis of blinking and bleaching. Nat Methods. 2013;10:97–8.

    Article  CAS  Google Scholar 

  39. Mukamel E, Babcock H, Zhuang X. Statistical deconvolution for superresolution fluorescence microscopy. Biophys J. 2012;102:2391–400.

    Article  CAS  Google Scholar 

  40. Ghiglia D, Romero L, Mastin G. Systematic approach to two-dimensional blind deconvolution by zero-sheet separation. J Opt Soc Am Part Opt Image Sci. 1993;10:1024–36.

    Article  Google Scholar 

  41. de Rooi J, Eilers P. Deconvolution of pulse trains with the L0 penalty. Anal Chim Acta. 2011;705:218–26.

    Article  Google Scholar 

  42. Candes E, Wakin M. An introduction to compressive sampling. IEEE Signal Process Mag. 2008;25:21–30.

    Article  Google Scholar 

  43. Candes E, Fernandez-Granda C. Towards a mathematical theory of super-resolution. Commun Pure Appl Math. 2014;67:906–56.

    Article  Google Scholar 

  44. Babcock H, Moffitt J, Cao Y, Zhuang X. Fast compressed sensing analysis for super-resolution imaging using L1-homotopy. Opt Express. 2013;21:28583–96.

    Article  Google Scholar 

  45. de Rooi J, Ruckebusch C, Eilers P. Sparse deconvolution in one and two dimensions: applications in endocrinology and single-molecule fluorescence imaging. Anal Chem. 2014;86:6291–8.

    Article  Google Scholar 

  46. Tikhonov A. Solution of incorrectly formulated problems and the regularization method. Sov Math. 1963;4:1035–8.

    Google Scholar 

  47. Dertinger T, Colyer R, Vogel R, Enderlein J, Weiss S. Achieving increased resolution and more pixels with superresolution optical fluctuation imaging (SOFI). Opt Express. 2010;18:18875–85.

    Article  Google Scholar 

  48. Dertinger T, Heilemann M, Vogel R, Sauer M, Weiss S. Superresolution optical fluctuation imaging with organic dyes. Angew Chem Int Ed Engl. 2010;49:9441–3.

    Article  CAS  Google Scholar 

  49. Girsault A, et al. SOFI simulation tool: a software package for simulating and testing super-resolution optical fluctuation imaging. PLoS One. 2016;11:e0161602.

    Article  Google Scholar 

  50. Dertinger T, Xu J, Naini O, Vogel R, Weiss S. SOFI-based 3D superresolution sectioning with a widefield microscope. Opt Nanoscopy. 2012;1:2.

    Article  Google Scholar 

  51. Sanchez F, Toft J, van den Bogaert B, Massart D. Orthogonal projection approach applied to peak purity assessment. Anal Chem. 1996;68:79–85.

    Article  CAS  Google Scholar 

  52. Sage D, et al. Quantitative evaluation of software packages for single-molecule localization microscopy. Nat Methods. 2015;12:717–24.

    Article  CAS  Google Scholar 

  53. Hoogendoorn E, et al. The fidelity of stochastic single-molecule super-resolution reconstructions critically depends upon robust background estimation. Sci Rep. 2014;4:srep03854.

    Google Scholar 

  54. de Rooi J, Devos O, Sliwa M, Ruckebusch C, Eilers P. Mixture models for two-dimensional baseline correction, applied to artifact elimination in time-resolved spectroscopy. Anal Chim Acta. 2013;771:7–13.

    Article  Google Scholar 

  55. Currie I, Durban M, Eilers P. Generalized linear array models with applications to multidimensional smoothing. J R Stat Soc Ser B Stat Methodol. 2006;68:259–80.

    Article  Google Scholar 

  56. Wolter S, et al. RapidSTORM: accurate, fast open-source software for localization microscopy. Nat Methods. 2012;9:1040–1.

    Article  CAS  Google Scholar 

  57. Berglund A. Nonexponential statistics of fluorescence photobleaching. J Chem Phys. 2004;121:2899–903.

    Article  CAS  Google Scholar 

  58. Hirschfeld T. Quantum efficiency independence of the time integrated emission from a fluorescent molecule. Appl Opt. 1976;15:3135–9.

    Article  CAS  Google Scholar 

  59. Wells K, Sandison D, Strickler J, Webb W. Quantitative fluorescence imaging with laser scanning confocal microscopy. In: Pawley J, editor. The handbook for biological confocal microscopy. Wisconsin: IMR Press; 1989. p. 27–39.

    Google Scholar 

  60. Peeters Y, et al. Correcting for photodestruction in super-resolution optical fluctuation imaging. Sci Rep. 2017;7:srep10470.

    Article  Google Scholar 

  61. Vicente N, Diaz Zamboni J, Adur J, Paravani E, Casco V. Photobleaching correction in fluorescence microscopy images. J Phys: Conf Ser. 2007;90:012068.

    Google Scholar 

  62. Geissbuehler S, et al. Live-cell multiplane three-dimensional super-resolution optical fluctuation imaging. Nat Comm. 2014;5:5830.

    Article  Google Scholar 

  63. Deschout H, et al. Complementarity of PALM and SOFI for super-resolution live-cell imaging of focal adhesions. Nat Comm. 2016;7:13693.

    Article  CAS  Google Scholar 

  64. Barsic A, Grover G, Piestun R. Three-dimensional super-resolution and localization of dense clusters of single molecules. Sci Reports. 2014;4:srep5388.

    Article  Google Scholar 

  65. Nehme E, Weiss L, Michaeli T, Shechtman Y. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica. 2018;5:458–64.

    Article  CAS  Google Scholar 

  66. Niehörster T, et al. Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat Methods. 2015;13:257–65.

    Article  Google Scholar 

Download references

Acknowledgements

C.R. and M.S acknowledge the financial support of the Agence National de la Recherche (ANR-14-CE08-0015-01 Ultrafast Nanoscopy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hugelier.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hugelier, S., Sliwa, M. & Ruckebusch, C. A Perspective on Data Processing in Super-resolution Fluorescence Microscopy Imaging. J. Anal. Test. 2, 193–209 (2018). https://doi.org/10.1007/s41664-018-0076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41664-018-0076-2

Keywords

Navigation