Skip to main content
Log in

Treatment of organic wastewater by a combination of non-thermal plasma and catalyst: a review

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

Recently, non-thermal plasma technology has been frequently used for wastewater treatment. Plasma technology uses the effect of high-energy electrons, reactive species, ultraviolet light, free radicals, and pyrolysis to treat wastewater. Although in many cases, only the use of non-thermal plasma alone is not successful in degrading the complex organic wastes. This might be because of complexity in wastewater or not appropriate plasma device for wastewater treatment, or improper use of plasma-generated species that plays a critical role in organic waste degradation. To increase the degradation efficiency and reduce treatment time, the combination of non-thermal plasma and catalysts (homogeneous and heterogeneous) improves pollutant removal. This review includes the different non-thermal plasma systems and their action on decolorizing or degradation of dyes, degradation of phenolic pollutants, and degradation of pharmaceutical products, including antibiotics and other volatile organic solvents (VOC’s) with and without catalyst. Finally, probable mechanisms and suggestions to improve the wastewater treatment using non-thermal plasma were put forward. This review aims to help researchers understand the role of treatment time, feed gases, and catalysts on the degradation of organic wastes and looks forward to all possible developments in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced from reference (Kaneko et al. 2022), copyright (2021) The Japan Society of Applied Physics

Fig. 2
Fig. 3

(Picture adapted from Attri et al. 2018; licensed under Creative Commons Attribution 4.0 International)

Fig. 4

(Picture adapted from Attri et al. 2016; licensed under Creative Commons Attribution 4.0 International)

Similar content being viewed by others

References

  • E. Abdel-Fattah, J. Electrostat. 101, 103360 (2019)

    Google Scholar 

  • C.A. Aggelopoulos, S. Meropoulis, M. Hatzisymeon, Z.G. Lada, G. Rassias, Chem. Eng. J. 398, 125622 (2020)

    Google Scholar 

  • P. Ahuja, S.K. Ujjain, R. Kanojia, P. Attri, J. Compos. Sci. 5, 82 (2021)

    Google Scholar 

  • R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, J. Sun, Ecotoxicol. Environ. Saf. 231, 113160 (2022)

    Google Scholar 

  • M. Ansari, A. Hossein Mahvi, M. Hossein Salmani, M. Sharifian, H. Fallahzadeh, M. Hassan Ehrampoush, Sep. Purif. Technol. 251, 117270 (2020)

    Google Scholar 

  • B. Arora, P. Attri, J. Compos. Sci. 4, 135 (2020)

    Google Scholar 

  • B. Arora, E.H. Choi, M. Shiratani, P. Attri, Smart Mater. Waste Water Appl. (Wiley, Hoboken, 2016), pp. 335–346

    Google Scholar 

  • P. Attri, B. Arora, R. Bhatia, P. Venkatesu, E.H. Choi, Appl. Nanotechnol. Water Res. (Wiley, Hoboken, 2014), pp. 63–77

    Google Scholar 

  • P. Attri, M. Yusupov, J.H. Park, L.P. Lingamdinne, J.R. Koduru, M. Shiratani, E.H. Choi, A. Bogaerts, Sci. Rep. 6, 34419 (2016)

    ADS  Google Scholar 

  • P. Attri, F. Tochikubo, J.H. Park, E.H. Choi, K. Koga, M. Shiratani, Sci. Rep. 8, 2926 (2018)

    ADS  Google Scholar 

  • Y. Baloul, O. Aubry, H. Rabat, C. Colas, B. Maunit, D. Hong, N. Gherardi, T. Hoder, E.P.J. Appl, Phys. 79, 30802 (2017)

    Google Scholar 

  • R. Banaschik, H. Jablonowski, P.J. Bednarski, J.F. Kolb, J. Hazard. Mater. 342, 651 (2018)

    Google Scholar 

  • A.S. Bansode, S.E. More, E.A. Siddiqui, S. Satpute, A. Ahmad, S.V. Bhoraskar, V.L. Mathe, Chemosphere 167, 396 (2017)

    ADS  Google Scholar 

  • S. Baruah, J. Dutta, Environ. Chem. Lett. 7, 191 (2009)

    Google Scholar 

  • Y. Cai, Y. Luo, B.C. Sun, T.X. Fan, G.W. Chu, J.F. Chen, Chem. Eng. J. 377, 119897 (2019)

    Google Scholar 

  • S.H.S. Chan, T.Y. Wu, J.C. Juan, C.Y. Teh, J. Chem. Technol. Biotechnol. 86, 1130 (2011)

    Google Scholar 

  • B. Chen, C. Zhu, J. Fei, Y. Jiang, C. Yin, W. Su, X. He, Y. Li, Q. Chen, Q. Ren, Y. Chen, J. Hazard. Mater. 363, 55 (2019)

    Google Scholar 

  • A.P.S. Crema, L.D. Piazza Borges, G.A. Micke, N.A. Debacher, Chemosphere 244, 125502 (2020)

    ADS  Google Scholar 

  • N.Y. Donkadokula, A.K. Kola, I. Naz, D. Saroj, Rev. Environ. Sci. Biotechnol. 19, 543 (2020)

    Google Scholar 

  • L. Duan, N. Jiang, N. Lu, K. Shang, J. Li, Y. Wu, Appl. Catal. B Environ. 221, 521 (2018)

    Google Scholar 

  • M. El Shaer, M. Eldaly, G. Heikal, Y. Sharaf, H. Diab, M. Mobasher, A. Rousseau, Plasma Chem. Plasma Process. 40, 971 (2020)

    Google Scholar 

  • A. Fahmy, A. El-Zomrawy, A.M. Saeed, A.Z. Sayed, M.A. Ezz El-Arab, H.A. Shehata, Chemosphere 210, 102 (2018)

    ADS  Google Scholar 

  • A. Fahmy, A. El-Zomrawy, A.M. Saeed, A.Z. Sayed, M.A. Ezz El-Arab, H. Shehata, J. Friedrich, Plasma Res. Express 2, 015009 (2020)

    ADS  Google Scholar 

  • J. Fan, H. Wu, R. Liu, L. Meng, Y. Sun, Environ. Sci. Pollut. Res. 28, 2522 (2020)

    Google Scholar 

  • J.E. Foster, Phys. Plasmas 24, 055501 (2017)

    ADS  Google Scholar 

  • G. Frascaroli, D. Reid, C. Hunter, J. Roberts, K. Helwig, J. Spencer, A. Escudero, Appl. Sci. 11, 6670 (2021)

    Google Scholar 

  • M.C. García, M. Mora, D. Esquivel, J.E. Foster, A. Rodero, C. Jiménez-Sanchidrián, F.J. Romero-Salguero, Chemosphere 180, 239 (2017)

    ADS  Google Scholar 

  • A. Giardina, F. Tampieri, O. Biondo, E. Marotta, C. Paradisi, Chem. Eng. J. 372, 171 (2019)

    Google Scholar 

  • H. Guo, N. Jiang, J. Li, Y. Wu, Vacuum 156, 402 (2018)

    ADS  Google Scholar 

  • H. Guo, N. Jiang, H. Wang, N. Lu, K. Shang, J. Li, Y. Wu, J. Hazard. Mater. 371, 666 (2019a)

    Google Scholar 

  • H. Guo, N. Jiang, H. Wang, K. Shang, N. Lu, J. Li, Y. Wu, Chemosphere 230, 190 (2019b)

    ADS  Google Scholar 

  • H. Guo, N. Jiang, H. Wang, K. Shang, N. Lu, J. Li, Y. Wu, Sep. Purif. Technol. 218, 206 (2019c)

    Google Scholar 

  • H. Guo, N. Jiang, H. Wang, K. Shang, N. Lu, J. Li, Y. Wu, Appl. Catal. B Environ. 248, 552 (2019d)

    Google Scholar 

  • H. Guo, Z. Li, Y. Zhang, N. Jiang, H. Wang, J. Li, Sep. Purif. Technol. 253, 117540 (2020)

    Google Scholar 

  • H. Guo, Z. Li, L. Xiang, N. Jiang, Y. Zhang, H. Wang, J. Li, J. Hazard. Mater. 403, 123673 (2021)

    Google Scholar 

  • V.K. Gupta, Suhas, J. Environ. Manage. 90, 2313 (2009)

    Google Scholar 

  • O.J. Hao, H. Kim, P.C. Chiang, Crit. Rev. Environ. Sci. Technol. 30, 449 (2000)

    Google Scholar 

  • X. He, M. Elkouz, M. Inyang, E. Dickenson, E.C. Wert, J. Hazard. Mater. 326, 101 (2017)

    Google Scholar 

  • G. Iervolino, V. Vaiano, V. Palma, Sep. Purif. Technol. 215, 155 (2019)

    Google Scholar 

  • D. Jaspal, A. Malviya, Chemosphere 246, 125788 (2020)

    ADS  Google Scholar 

  • B. Jiang, J. Zheng, S. Qiu, M. Wu, Q. Zhang, Z. Yan, Q. Xue, Chem. Eng. J. 236, 348 (2014)

    Google Scholar 

  • O.A.H. Jones, N. Voulvoulis, J.N. Lester, Crit. Rev. Environ. Sci. Technol. 35, 401 (2005)

    Google Scholar 

  • J. Jose, L. Philip, J. Environ. Chem. Eng. 7, 103476 (2019)

    Google Scholar 

  • T. Kaneko, H. Kato, H. Yamada, M. Yamamoto, T. Yoshida, P. Attri, K. Koga, T. Murakami, K. Kuchitsu, S. Ando, Y. Nishikawa, K. Tomita, R. Ono, T. Ito, A.M. Ito, K. Eriguchi, T. Nozaki, T. Tsutsumi, K. Ishikawa, Jpn. J. Appl. Phys. 61, SA0805 (2022)

    Google Scholar 

  • P. Kazemi, M. Peydayesh, A. Bandegi, T. Mohammadi, O. Bakhtiari, Chem. Eng. Res. Des. 92, 375 (2014)

    Google Scholar 

  • R. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale, L.F.R. Ferreira, M. Bilal, R. Chandra, R.N. Bharagava, J. Environ. Chem. Eng. 9, 105012 (2021)

    Google Scholar 

  • A. Kumar, N. Škoro, W. Gernjak, N. Puač, Eur. Phys. J. D 75, 1 (2021)

    Google Scholar 

  • J. Li, W. Cheng, L. Xu, Y. Jiao, S.A. Baig, H. Chen, Environ. Sci. Pollut. Res. 23, 6826 (2016)

    Google Scholar 

  • H. Li, T. Li, S. He, J. Zhou, T. Wang, L. Zhu, Chem. Eng. J. 395, 125091 (2020)

    Google Scholar 

  • L. Lin, S.A. Starostin, S. Li, V. Hessel, Phys. Sci. Rev. (2019). https://doi.org/10.1515/psr-2017-0121

    Article  Google Scholar 

  • L.P. Lingamdinne, Y.Y. Chang, J.K. Yang, J. Singh, E.H. Choi, M. Shiratani, J.R. Koduru, P. Attri, Chem. Eng. J. 307, 74 (2017)

    Google Scholar 

  • A.J. Luna, L.O.A. Rojas, D.M.A. Melo, M. Benachour, J.F. De Sousa, Braz. J. Chem. Eng. 26, 493 (2009)

    Google Scholar 

  • M. Magureanu, F. Bilea, C. Bradu, D. Hong, J. Hazard. Mater. 417, 125481 (2021)

    Google Scholar 

  • S. Mohammadi, A. Kargari, H. Sanaeepur, K. Abbassian, A. Najafi, E. Mofarrah, Desalin. Water Treat. 53, 2215 (2015)

    Google Scholar 

  • S. Mukherjee, B. Basak, B. Bhunia, A. Dey, B. Mondal, Rev. Environ. Sci. Biotechnol. 12, 61 (2013)

    Google Scholar 

  • S. Murgolo, S. Franz, H. Arab, M. Bestetti, E. Falletta, G. Mascolo, Water Res. 164, 114920 (2019)

    Google Scholar 

  • K. Navaneetha Pandiyaraj, D. Vasu, M.C. Ramkumar, R.R. Deshmukh, R. Ghobeira, Sep. Purif. Technol. 258, 118037 (2021)

    Google Scholar 

  • K.N. Pandiyaraj, D. Vasu, R. Ghobeira, P.S.E. Tabaei, N. De Geyter, R. Morent, M. Pichumani, P.V.A. Padmanabhanan, R.R. Deshmukh, J. Hazard. Mater. 405, 124264 (2021)

    Google Scholar 

  • M. Petrović, S. Rančev, N. Velinov, M. Radović Vučić, M. Antonijević, G. Nikolić, A. Bojić, Sep. Purif. Technol. 269, 118748 (2021)

    Google Scholar 

  • G.R. Pophali, S. Hedau, N. Gedam, N.N. Rao, T. Nandy, J. Hazard. Mater. 189, 273 (2011)

    Google Scholar 

  • W. Qi, H. Singer, M. Berg, B. Müller, B. Pernet-Coudrier, H. Liu, J. Qu, Chemosphere 119, 1054 (2015)

    ADS  Google Scholar 

  • Z.H. Qi, L. Yang, Y. Xia, Z.F. Ding, J.H. Niu, D.P. Liu, Y. Zhao, L.F. Ji, Y. Song, X.S. Lin, Environ. Sci. Water Res. Technol. 5, 920 (2019)

    Google Scholar 

  • M. Rahimpour, H. Taghvaei, S. Zafarnak, M.R. Rahimpour, S. Raeissi, J. Environ. Chem. Eng. 7, 103220 (2019)

    Google Scholar 

  • M. Russo, G. Iervolino, V. Vaiano, V. Palma, Catalysts 10, 1438 (2020)

    Google Scholar 

  • W. Sang, J. Cui, Y. Feng, L. Mei, Q. Zhang, D. Li, W. Zhang, Chemosphere 223, 416 (2019)

    ADS  Google Scholar 

  • K. Shang, H. Wang, J. Li, N. Lu, N. Jiang, Y. Wu, Plasma Sci. Technol. 19, 064017 (2017a)

    ADS  Google Scholar 

  • K. Shang, X. Wang, J. Li, H. Wang, N. Lu, N. Jiang, Y. Wu, Chem. Eng. J. 311, 378 (2017b)

    Google Scholar 

  • K. Shang, W. Li, X. Wang, N. Lu, N. Jiang, J. Li, Y. Wu, Sep. Purif. Technol. 218, 106 (2019)

    Google Scholar 

  • J. Smith, I. Adams, H.-F. Ji, Plasma 1, 1 (2017)

    Google Scholar 

  • G. Son, H. Lee, Environ. Sci. Pollut. Res. 23, 15651 (2016)

    Google Scholar 

  • X. Sun, C. Wang, Y. Li, W. Wang, J. Wei, Desalination 355, 68 (2015)

    Google Scholar 

  • Y. Sun, Y. Liu, R. Li, G. Xue, S. Ognier, Chemosphere 155, 243 (2016)

    ADS  Google Scholar 

  • G. Sun, J. Wan, Y. Sun, H. Li, C. Chang, Y. Wang, Chemosphere 237, 124520 (2019a)

    ADS  Google Scholar 

  • M. Sun, Y. Zhang, S.Y. Kong, L.F. Zhai, S. Wang, Water Res. 158, 313 (2019b)

    Google Scholar 

  • T. Takamatsu, K. Uehara, Y. Sasaki, H. Miyahara, Y. Matsumura, A. Iwasawa, N. Ito, T. Azuma, M. Kohno, A. Okino, RSC Adv. 4, 39901 (2014)

    ADS  Google Scholar 

  • F. Tampieri, A. Durighello, O. Biondo, M. Gąsior, A. Knyś, E. Marotta, C. Paradisi, Plasma Chem. Plasma Process. 39, 545 (2019)

    Google Scholar 

  • S. Tang, D. Yuan, Y. Rao, N. Li, J. Qi, T. Cheng, Z. Sun, J. Gu, H. Huang, Chem. Eng. J. 337, 446 (2018)

    Google Scholar 

  • S. Tang, X. Li, C. Zhang, Y. Liu, W. Zhang, D. Yuan, Plasma Sci. Technol. 21, 025504 (2019a)

    ADS  Google Scholar 

  • S. Tang, D. Yuan, Y. Rao, M. Li, G. Shi, J. Gu, T. Zhang, J. Hazard. Mater. 366, 669 (2019b)

    Google Scholar 

  • J.B. Tarkwa, E. Acayanka, B. Jiang, N. Oturan, G.Y. Kamgang, S. Laminsi, M.A. Oturan, Appl. Catal. B Environ. 246, 211 (2019)

    Google Scholar 

  • J.O. Tijani, M.E.S. Mouele, T.C. Tottito, O.O. Fatoba, L.F. Petrik, Plasma Chem. Plasma Process. 37, 1343 (2017)

    Google Scholar 

  • D. Vasu, K. Navaneetha Pandiyaraj, P.V.A. Padmanabhan, M. Pichumani, R.R. Deshmukh, S.K. Jaganathan, Environ. Geochem. Health 43, 649 (2021)

    Google Scholar 

  • J. Vergara Sanchez, C. Torres Segundo, E. Montiel Palacios, A. Gomez Diaz, P.G. Reyes Romero, H. Martinez Valencia, IEEE Trans. Plasma Sci. 45, 479 (2017)

    ADS  Google Scholar 

  • N. Wang, T. Zheng, G. Zhang, P. Wang, J. Environ. Chem. Eng. 4, 762 (2016)

    Google Scholar 

  • C. Wang, G. Qu, T. Wang, F. Deng, D. Liang, Chem. Eng. J. 346, 159 (2018a)

    Google Scholar 

  • T. Wang, H. Jia, X. Guo, T. Xia, G. Qu, Q. Sun, X. Yin, Chem. Eng. J. 346, 65 (2018b)

    Google Scholar 

  • B. Wang, C. Wang, S. Yao, Y. Peng, Y. Xu, Plasma Sci. Technol. 21, 065503 (2019a)

    ADS  Google Scholar 

  • X. Wang, G. Zhang, X. Liu, L. Hu, Q. Wang, P. Wang, Chemosphere 232, 462 (2019b)

    ADS  Google Scholar 

  • X. Wang, P. Wang, X. Liu, L. Hu, Q. Wang, P. Xu, G. Zhang, Chem. Eng. J. 389, 124381 (2020)

    Google Scholar 

  • Y. Wang, X. Sun, T. Xian, G. Liu, H. Yang, Opt. Mater. (amst). 113, 110853 (2021)

    Google Scholar 

  • J. Wu, Q. Xiong, J. Liang, Q. He, D. Yang, R. Deng, Y. Chen, Chem. Eng. J. 384, 123300 (2020)

    Google Scholar 

  • Z. Xu, X. Xue, S. Hu, Y. Li, J. Shen, Y. Lan, R. Zhou, F. Yang, C. Cheng, Sep. Purif. Technol. 230, 115862 (2020)

    Google Scholar 

  • X. Yan, C. Yi, Y. Wang, W. Cao, D. Mao, Q. Ou, P. Shen, H. Wang, Sep. Purif. Technol. 231, 115897 (2020)

    Google Scholar 

  • G. Zhang, Y. Sun, C. Zhang, Z. Yu, J. Hazard. Mater. 323, 719 (2017)

    Google Scholar 

  • H. Zhang, Q. Zhang, C. Miao, Q. Huang, Chemosphere 204, 351 (2018a)

    ADS  Google Scholar 

  • Q. Zhang, H. Zhang, Q. Zhang, Q. Huang, Chemosphere 210, 433 (2018b)

    ADS  Google Scholar 

  • R. Zhu, Y. Mao, L. Jiang, J. Chen, Chem. Eng. J. 279, 463 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by JSPS-KAKENHI grant number 22H01212. Additionally, partly supported by JSPS KAKENHI Grant Number JP16H03895, JP19H05462, 22H02540, 22K03586, JP20H01893, JP20K14454, JSPS Core-to-Core Program "Data Driven Plasma Science", Plasma Bio Consortium, Adaptable and Seamless Technology transfer Program through Target-driven R&D (A-STEP) from Japan Science and Technology Agency (JST) Grant Number JPMJTR20RU, and Center for Low-temperature Plasma Sciences, Nagoya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Attri.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Attri, P., Koga, K., Okumura, T. et al. Treatment of organic wastewater by a combination of non-thermal plasma and catalyst: a review. Rev. Mod. Plasma Phys. 6, 17 (2022). https://doi.org/10.1007/s41614-022-00077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-022-00077-1

Keywords

Navigation