Skip to main content

Advertisement

Log in

A review of the characterization and optimization of ablative pulsed plasma thrusters

  • Topical Collection: Review Paper
  • Recent Progress in Physics of Plasma-Based Space Propulsion
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

The increasing number of small satellites has resulted in greater consideration of electric propulsion (EP) as potential thruster systems. Of these, ablative pulsed plasma thrusters (APPTs) are a type of EP system that is suitable for microsatellites. They have recently attracted attention for application in small satellites due to their simple and compact system. However, from a scientific perspective, we still have limited understanding regarding APPT mechanisms such as the acceleration mechanism, plasma propagation, and associated physical phenomena. From an engineering perspective, widespread adoption can be aided by the optimization of APPTs, including improvements in the thrust efficiency, energy bank miniaturization, and a better understanding of the plasma plume characteristics and possible interactions with spacecraft. These are some issues that still remain as challenges in the research and development of APPTs. This review discusses our current understanding of the fundamental mechanisms behind APPT operation as well as some new insights and recent progress associated with APPTs. Typical characterization methods for APPTs are presented along with discussion of the operation process and relevant physical phenomena. To support an engineering perspective, we also discuss optimization approaches for APPTs such as changes in the thruster geometry, alternative propellants, and electrical circuit optimization. New insights and novel approaches resulting from the use of modern technology in APPT research are also presented, along with current understanding that attempt to tie scientific perspectives with engineering observations, such as the physical reasons behind certain performance enhancements from optimization efforts. Finally, some remaining challenging issues are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

[Reprinted from Ling et al. (2017a), with the permission of AIP Publishing]

Fig. 2
Fig. 3

[Re-drawn from Ref. Keidar et al. (2001a)]

Fig. 4

[Pictures re-drawn from Ref. (Koizumi et al. 2007a)]

Fig. 5

[from Ref. (Zhang et al. 2018a). © IOP Publishing. Reproduced with permission. All rights reserved]

Fig. 6

[reproduced with permission from Ref. (Lau et al. 2014)]

Fig. 7
Fig. 8

[reproduced from Ref. (Lieberman and Lichtenberg 2005) under the terms of the Creative Commons Attribution 3.0 license]

Fig. 9

[Reprinted from Tang et al. (2011), with the permission of AIP Publishing]

Fig. 10

[reproduced with permission from Ref. (Schönherr et al. 2009), Copyright from Herdrich et al.]

Fig. 11
Fig. 12

[from Ref. (Skalden et al. 2017), © IOP Publishing. Reproduced with permission. All rights reserved]

Fig. 13

[Reprinted from Ling et al. (2017a), with the permission of AIP Publishing]

Fig. 14
Fig. 15

Similar content being viewed by others

References

  • E. Ahedo, Plasmas for space propulsion. Plasma Phys. Control. Fusion 53(12), 124037 (2011)

    Article  ADS  Google Scholar 

  • Y.A. Alexeev, M.N. Kazeev, Performance study of high power ablative pulsed plasma thruster. In 26th International Propulsion Conference, IEPC-99-207, October, Kitakyushu, Japan (1999)

  • S.M. An, H.J. Wu, MDT-2A teflon pulsed plasma thruster. J. Spacecr. Rock. 19(5), 385–386 (1981)

    Article  Google Scholar 

  • S.M. An, H.J. Wu, X.Z. Feng et al., Space flight test of electric thruster system MDT-2A. J. Spacecr. Rock. 21(6), 593–594 (1984)

    Article  ADS  Google Scholar 

  • E. Antonsen, R. Burton, G. Reed et al., Effects of postpulse surface temperature on micropulsed plasma thruster operation. J. Propul. Power 21(5), 877–883 (2005)

    Article  Google Scholar 

  • N.N. Antropov, G.A. Dyakonov, N.V. Lyubinskaya et al., A new stage in the development of ablative pulsed plasma thrusters at the RIAME. Sol. Syst. Res. 46(7), 531–541 (2012)

    Article  ADS  Google Scholar 

  • N.N. Antropov, M.N. Kazeev, V.P. Khodnenko, SSC ZOND with APPT-95 Based EPS. In 34th International Electric Propulsion Conference, IEPC-2015-18, Kobe, Japan (2015)

  • L.A. Arrington, T.W. Haag, E.J. Pencil, N.J. Meckel, A performance comparison of pulsed plasma thruster electrode configurations. In International Electric Propulsion Conference, Paper 97-127, Aug (1997)

  • L. Arrington, S. Benson, W. Hoskins, N. Meckel, Development of a PPT for the EO-1 Spacecraft. AIAA Paper 99-2276, June (1999)

  • O. Baranov, K. Bazaka, H. Kersten et al., Plasma under control: advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis. Appl. Phys. Rev. 4(4), 041302 (2017)

    Article  ADS  Google Scholar 

  • O. Baranov, I. Levchenko, J.M. Bell et al., From nanometre to millimetre: a range of capabilities for plasma-enabled surface functionalization and nanostructuring. Mater. Horiz. 5, 765–798 (2018)

    Article  Google Scholar 

  • S. Barral, R.E. Kurzyna, Development status of an open capillary pulsed plasma thruster with non-volatile liquid propellant. In International Electric Propulsion Conference, IEPC-2013-291, Washington, D.C. (2013)

  • A. Behroozfar, S. Daryadel, S.R. Morsali et al., Microscale 3D printing of nanotwinned copper. Adv. Mater 30(4), 1705107 (2018)

    Article  Google Scholar 

  • I.I. Beilis, Parameters of the kinetic layer of arc-discharge cathode region. IEEE Trans. Plasma Sci. 13(5), 288–290 (1985)

    Article  ADS  Google Scholar 

  • I.I. Beilis, Theoretical modeling of cathode spot phenomena. In Handbook of vacuum arc science and technology (William Andrew publishing, New York, 1996), pp. 208–256

    Chapter  Google Scholar 

  • E.J. Beiting, Impulse thrust stand for MEMS propulsion systems. In AIAA Paper No. 99-2720 (1999)

  • H. Böhrk, M. Lau, G. Herdrich, H. Hald, H.-P. Röser, A porous flow control element for pulsed plasma thrusters. CEAS Sp. J. Springer (2011). https://doi.org/10.1007/s12567-011-0019-5

    Article  Google Scholar 

  • R.L. Burton, S.S. Bushman, Probe measurements in a coaxial gasdynamic PPT. In 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-1999-2288, Los Angeles, CA, USA (1999)

  • R.L. Burton, P.J. Turchi, Pulsed plasma thruster. J. Propul. Power 14(5), 716–735 (1998)

    Article  Google Scholar 

  • S.S. Bushman, B.L. Burton, E.L. Antonsen, Arc measurements and performance characteristics of a coaxial pulsed plasma thruster. In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA-1998-3660, Cleveland, OH, USA (1998)

  • R.J. Cassady, W.A. Hoskins, M.E. Campbell, et al., A Micro pulsed plasma thruster (PPT) for the ‘Dawgstar’ spacecraft. In Aerospace Conference. IEEE (2000)

  • Y.A. Chan, G. Herdrich, T. Schönherr, Review of thermal pulsed plasma thruster-design, characterization, and application. In 30th International Symposium on Space Technology and Science, Kobe, Japan, 6–10 July (2015)

  • S.L. Chen, T. Sekiguchi, Instantaneous direct-display system of plasma parameters by means of triple probe. J. Appl. Phys. 26(8), 2363–2375 (1965)

    Article  ADS  Google Scholar 

  • E.Y. Choueiri, A critical history of electric propulsion: the first 50 years (1906–1956). J. Propul. Power 20(2), 193–203 (2004)

    Article  Google Scholar 

  • M. Coletti, R. Intini Marques, S.B. Gabriel, Design of a two-stage PPT for Cubesat application. In 31st International Electric Propulsion Conference, IEPC-2009-244, Michigan (2009)

  • W.L. Ebert, S.J. Kowal, R.F. Sloan, Operational nova spacecraft teflon PPT system. AIAA Paper 89-2497, July (1989)

  • R.F. Eckman, Langmuir probe measurements in the plume of a pulsed plasma thruster. Master thesis. Worcester Polytechnic Institute (1999)

  • R. Eckman, L. Byrne, E. Cameron, N. Gatsonis, Analysis of triple langmuir probe measurement in the plume of a pulsed plasma thruster, AIAA-99-2286, Salt Lake City (1999)

  • R. Eckman, L. Byrne, N.A. Gatsonis et al., Triple langmuir probe measurements in the plume of a pulsed plasma thruster. J. Propul. Power 17(4), 762–771 (2001)

    Article  Google Scholar 

  • T. Edamitsu, H. Asakura, A. Matsumoto, et al., Research and development of a pulsed plasma thruster in Osaka University. In 29th International Electric Propulsion Conference, Princeton University (2005)

  • J. Emhoff, D. Simon, B. Land, Progress in thrust measurements from micro pulsed plasma discharges. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit (2007)

  • R.H. Frisbee, Advanced space propulsion for the 21st century. J. Propul. Power 19(6), 432–446 (2003)

    Article  Google Scholar 

  • M. Gamerocastaño, A torsional balance for the characterization of microNewton thrusters. Rev. Sci. Instrum. 74(10), 4509–4514 (2003)

    Article  ADS  Google Scholar 

  • N.A. Gatsonis, R. Eckman, X. Yin, E.J. Pencil, R.M. Myers, Experimental investigations and numerical modeling of pulsed plasma thruster plumes. J. Spacecr. Rock. 38, 454–464 (2001)

    Article  ADS  Google Scholar 

  • N.A. Gatsonis, J. Zwahlen, A. Wheelock et al., Pulsed plasma thruster plume investigation using a current-mode quadruple probe method. J. Propul. Power 20(2), 243–254 (2004)

    Article  Google Scholar 

  • N. Gatsonis, D. Juric, D. Stechmann, et al., Numerical analysis of teflon ablation in pulsed plasma thrusters. In 43rd Aiaa/asme/sae/asee Joint Propulsion Conference and Exhibit, AIAA 2007-5227 (2007)

  • L. Giulicchi, S.F. Wu, T. Fenal, Attitude and orbit control systems for the LISA Pathfinder mission. Aerosp. Sci. Technol. 24(1), 283–294 (2013)

    Article  Google Scholar 

  • M.S. Glascock, J. Rovey, S. Williams, et al., Observation of late-time ablation in electric solid propellant pulsed microthrusters. In 52nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA 2016-4845, Salt Lake City (2016a)

  • M.S. Glascock, J. Rovey, S. Williams, et al., Plasma plume characterization of electric solid propellant micro pulsed plasma thrusters. In 51st AIAA/SAE/ASEE Joint Propulsion Conference, AIAA 2015-4185, Orlando (2016b)

  • M.S. Glascock, J.L. Rovey, S. Williams, J. Thrasher, Plume characterization of electric solid propellant pulsed microthrusters. J. Propul. Power 33(4), 870–880 (2017)

    Article  Google Scholar 

  • K.D.M. Goebel, Fundamentals of Electric Propulsion (Wiley, Hoboken, 2008)

    Book  Google Scholar 

  • W. Guman, M. Begun, Exhaust plume studies of a pulsed plasma thruster. In 13th International Electric Propulsion Conference, San Diego (1978)

  • W. Guman, T. Williams, Pulsed plasma microthruster for synchronous meteorological satellite. J. Spacecr. Rock. 11(10), 729–731 (1974)

    Article  ADS  Google Scholar 

  • T.W. Haag, Thrust stand for pulsed plasma thrusters. Rev. Sci. Instrum. 68(5), 2060–2067 (1997)

    Article  ADS  Google Scholar 

  • G. Herdrich, M. Fertig, D. Petkow et al., Operational behavior and application regime assessment of the magnetic acceleration plasma facility IMAX. Vacuum 85(5), 563–568 (2010)

    Article  ADS  Google Scholar 

  • F.M. Hicks, L. Perna, C.S. Coffman, P.C. Lozano, Characterization of a CubeSat compatible magnetically levitated thrust balance for electrospray propulsion systems. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2013-3879, San Jose, CA (2013)

  • M. Hideto, A coaxial pulsed plasma thruster using chemical propellants. Vacuum 80(11), 1229–1233 (2006)

    Google Scholar 

  • T. Huang, Z. Wu, X. Liu et al., Study of breakdown in an ablative pulsed plasma thruster. Phys. Plasmas 22(10), 103511 (2015)

    Article  ADS  Google Scholar 

  • D. Ilic, J. Skalden, G. Herdrich, T. Schönherr, K. Komurasaki, H. Koizumi, Characterization and optimization of liquid-ablative and air-breathing PPT, Part II: spectroscopic investigation. In 35th International Electric Propulsion Conference, IEPC-2017-175, Georgia, USA, October (2017)

  • R.G. Jahn, Physics of Electric Propulsion (Courier Corporation, North Chelmsford, 2006)

    Google Scholar 

  • H. Kamhawi, E. Pencil, High thrust-to-power parallel-rail pulsed plasma thruster design. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2002-3975, Indianapolis (2002)

  • M.N. Kazeev, V.F. Kozlov, Ablation-fed discharge characteristics. In 31st International Electric Propulsion Conference, IEPC-2009-249, Ann Arbor, MI, USA (2009)

  • M. Keidar, Micro-Cathode Arc Thruster for small satellite propulsion. In 53rd AIAA Aerospace Sciences Meeting (2015)

  • M. Keidar, I.D. Boyd, I.I. Beilis. A model of teflon ablation in a pulsed plasma thruster. IEEE International Conference on Plasma Science (2000)

  • M. Keidar, I.D. Boyd, I.I. Beilis, On the model of Teflon ablation in an ablation-controlled discharge. J. Phys. D Appl. Phys. 34(11), 1675–1677 (2001a)

    Article  ADS  Google Scholar 

  • M. Keidar, J. Fan, I.D. Boyd et al., Vaporization of heated materials into discharge plasmas. J. Appl. Phys. 89(6), 3095–3098 (2001b)

    Article  ADS  Google Scholar 

  • M. Keidar, I.D. Boyd, F.S.I. Gulczinski, et al., Analyses of teflon surface charring and near field plume of a micro-pulsed plasma thruster, NASA Sti/recon Technical Report N (2001c)

  • M. Keidar, I.D. Boyd, I.I. Beilis, Electrical discharge in the Teflon cavity of a coaxial pulsed plasma thruster. IEEE Trans. Plasma Sci. 28(2), 376–385 (2002)

    Article  ADS  Google Scholar 

  • M. Keidar, I.D. Boyd, I.I. Beilis, Model of an electrothermal pulsed plasma thruster. J. Propul. Power 19(3), 424–430 (2003)

    Article  Google Scholar 

  • M. Keidar, I. Boyd, E.L. Antonsen et al., Propellant charring in pulsed plasma thrusters. J. Propul. Power 20(6), 978–984 (2004)

    Article  Google Scholar 

  • M. Keidar, I.D. Boyd, E.L. Antonsen et al., Optimization issues for a micropulsed plasma thruster. J. Propul. Power 22(1), 48–55 (2006)

    Article  Google Scholar 

  • M. Keidar, T. Zhuang, A. Shashurin et al., Electric propulsion for small satellites. Plasma Phys. Control. Fusion 57(1), 014005 (2014)

    Article  ADS  Google Scholar 

  • I.T. Keith, R.J. Vondra, Exhaust velocity studies of a solid Teflon pulsed plasma thruster. J. Spacecr. Rock. 9(1), 61–64 (1972)

    Article  Google Scholar 

  • I. Kimura, R. Yanagi, S. Inoue. Preliminary experiments on pulsed plasma thrusters with applied magnetic fields. In AIAA/DGLR 13th International Electric Propulsion Conf., Paper 78-655, April (1978)

  • N. Kishi, Management analysis for the space industry. Sp. Policy 39–40, 1–6 (2017)

    ADS  Google Scholar 

  • H. Koizumi, K. Komurasaki, Y. Arakawa, Development of thrust stand for low impulse measurement from microthrusters. Rev. Sci. Instrum. 75(10), 3185–3190 (2004)

    Article  ADS  Google Scholar 

  • H. Koizumi, R. Noji, K. Komurasaki et al., Plasma acceleration processes in an ablative pulsed plasma thruster. Phys. Plasmas 14(3), 033506 (2007a)

    Article  ADS  Google Scholar 

  • H. Koizumi, R. Noji, K. Komurasaki, et al., Study on plasma acceleration in an ablative pulsed plasma thruster. In 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cincinnati, AIAA 2007-5226 (2007b)

  • I. Langmuir, The vapor pressure of metallic tungsten. Phys. Rev. 2(5), 329–342 (1913)

    Article  ADS  Google Scholar 

  • M. Lau, G. Herdrich, Plasma diagnostic with inductive probes in the discharge channel of a pulsed plasma thruster. Vacuum 110(110), 165–171 (2014)

    Article  ADS  Google Scholar 

  • M. Lau, S. Manna, G. Herdrich et al., Investigation of the plasma current density of a pulsed plasma thruster. J. Propul. Power 30(6), 1459–1470 (2014)

    Article  Google Scholar 

  • I. Levchenko, I.I. Beilis, M. Keidar, Nanoscaled metamaterial as an advanced heat pump and cooling media. Adv. Mater. Technol. 1(2), 1600008 (2016)

    Article  Google Scholar 

  • I. Levchenko, M. Keidar, J. Cantrell et al., Explore space using swarms of tiny satellites. Nature 562, 185–187 (2018a)

    Article  ADS  Google Scholar 

  • I. Levchenko, S. Xu, G. Teel et al., Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials. Nat. Commun. 9(1), 879 (2018b)

    Article  ADS  Google Scholar 

  • I. Levchenko, K. Bazaka, M. Keidar et al., Hierarchical multicomponent inorganic metamaterials: intrinsically driven self-assembly at the nanoscale. Adv. Mater. 30(2), 1702226 (2018c)

    Article  Google Scholar 

  • I. Levchenko, K. Bazaka, O. Baranov et al., Lightning under water: diverse reactive environments and evidence of synergistic effects for material treatment and activation. Appl. Phys. Rev. 5(2), 021103 (2018d)

    Article  ADS  Google Scholar 

  • I. Levchenko, K. Bazaka, Y. Ding, Y. Raitses et al., Space micropropulsion systems for Cubesats and small satellites: from proximate targets to furthermost frontiers. Appl. Phys. Rev. 5(1), 011104 (2018e)

    Article  ADS  Google Scholar 

  • I. Levchenko, S. Xu, S. Mazouffre et al., Mars colonization: beyond getting there. Glob. Chall. 3(1), 1800062 (2019)

    Article  Google Scholar 

  • M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing, 2nd edn. (Wiley, New York, 2005)

    Book  Google Scholar 

  • W.Y.L. Ling, T. Schönherr, H. Koizumi, Characteristics of a non-volatile liquid propellant in liquid-fed ablative pulsed plasma thrusters. J. Appl. Phys. 121(7), 073301 (2017a)

    Article  ADS  Google Scholar 

  • W.Y.L. Ling, T. Schönherr, H. Koizumi, Discharge characteristics of an ablative pulsed plasma thruster with non-volatile liquid propellant. Appl. Phys. Lett. 111(1), 1452–1461 (2017b)

    Article  Google Scholar 

  • W.Y.L. Ling, Z. Zhang, H. Tang et al., In-plume acceleration of leading-edge ions from a pulsed plasma thruster. Plasma Sources Sci. Technol. 27(10), 104002 (2018)

    Article  ADS  Google Scholar 

  • X. Liu, S. Wang, Y. Zhou, Z. Wu, K. Xie, N. Wang, Thermal radiation properties of PTFE plasma. Plasma Sci. Technol 19(6), 064012 (2017)

    Article  ADS  Google Scholar 

  • T.E. Markusic, R.A. Spores, Spectroscopic emission measurements of a pulsed plasma thruster plume. In 33rd Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences, AIAA Paper 97-2924 (1997)

  • T.E. Markusic, K.A. Polzin, E.Y. Choueiri et al., The design and development of rogowski coil probes for measurement of current. J. Propul. Power 21(3), 392–400 (2005)

    Article  Google Scholar 

  • R.I. Marques, A mechanism to accelerate the late ablation in pulsed plasma thrusters. Ph.D. thesis, University of Southampton, UK, February (2009)

  • M. Martinez-Sanchez, J.E. Pollard, Spacecraft electric propulsion—an overview. J. Propul. Power 14(5), 688–699 (1998)

    Article  Google Scholar 

  • S. Mazouffre, Electric propulsion for satellites and spacecraft: established technologies and novel approaches. Plasma Source Sci. Technol. 25(3), 033002 (2016)

    Article  ADS  Google Scholar 

  • N. Meckel, W. Hoskins, R. Cassady, et al., Improved pulsed plasma thruster systems for satellite propulsion. In 32nd Joint Propulsion Conference and Exhibit (1996)

  • S. Messer, A. Case, R. Bomgardner et al., Fast pressure probe measurements of a high-velocity plasma plume. Phys. Plasmas 16(6), 064502 (2009)

    Article  ADS  Google Scholar 

  • C.J. Michels, T.M. York, Exhaust flow and propulsion characteristics of a pulsed MPD-arc thruster. AIAA J. 11(5), 579–580 (1973)

    Article  ADS  Google Scholar 

  • Y.G. Mikellides, Theoretical modeling and optimization of ablation-fed pulsed plasma thruster. PhD Thesis, The Ohio State University (1999)

  • P. Mikellides, P. Turchi, Modeling of late-time ablation in Teflon pulsed plasma thrusters. In Joint Propulsion Conference and Exhibit, Lake Buena Vista, July (1996)

  • P. Molina-Cabrera, G. Herdrich, M. Lau, S. Fausolas, T. Schoenherr, K. Komurasaki, Pulsed plasma thrusters: a worldwide review and long yearned classification, IEPC-2011-340. In 32nd International Electric Propulsion Conference, Wiesbaden, Germany, Sept. 11–15 (2011)

  • C. Montag, G. Herdrich, T. Schönherr, Modifications and experimental analysis towards an update of the pulsed plasma thruster PETRUS. In 35th International Electric Propulsion Conference, IEPC-2017-484, Atlanta, Georgia, USA, October (2017)

  • A. Nawaz, M. Lau, Plasma sheet velocity measurement techniques for the pulsed plasma thruster SIMP-LEX, IEPC-2011-248, Wiesbaden (2011)

  • A. Nawaz, G. Herdrich, H.L. Kurtz, T. Schönherr, M. Auweter-Kurtz, SIMP-LEX: systematic geometry variation using thrust balance measurements. In 30th IEPC, Florence, Italy, September (2007)

  • A. Nawaz, M. Lau, G. Herdrich et al., Investigation of the magnetic field in a pulsed plasma thruster. AIAA J. 46(11), 2881–2889 (2008)

    Article  ADS  Google Scholar 

  • A. Nawaz, R. Albertoni, M. Auweterkurtz, Thrust efficiency optimization of the pulsed plasma thruster SIMP-LEX. Acta Astronaut. 67(3), 440–448 (2010)

    Article  ADS  Google Scholar 

  • F.A. Oluwafemi, A. De La Torre, E.M. Afolayan et al., Space food and nutrition in a long term manned mission. Adv. Astronaut. Sci. Technol. 1(1), 1–21 (2018)

    Article  ADS  Google Scholar 

  • D.J. Palumbo, W.J. Guman, Effects of propellant and electrode geometry on pulsed ablative plasma thruster performance. J. Spacecr. Rock. 13(3), 163–167 (1976)

    Article  ADS  Google Scholar 

  • L. Pekker, M. Keidar, J.L. Cambier, Effect of thermal conductivity on the Knudsen layer at ablative surfaces. J. Appl. Phys. 103(3), 034906 (2008)

    Article  ADS  Google Scholar 

  • L. Pekker, N. Gimelshein, S.F. Gimelshein, Analytical and kinetic modeling of ablation process. J. Thermophys. Heat Transf. 23(3), 473–478 (2009)

    Article  Google Scholar 

  • G.A. Popov, N.N. Antropov, Ablative PPT new quality, new perspectives. Acta Astronaut. 59(1–5), 175–180 (2006)

    Article  ADS  Google Scholar 

  • A. Rezaeiha, T. Schönherr, Review of worldwide activities in liquid-fed pulsed plasma thruster. J. Propul. Power 30(2), 253–264 (2015)

    Article  Google Scholar 

  • W.N. Sawka, Pulse performance and power requirements for electrically controlled solid propellant. In 54th JANNAF Propulsion Meeting, JANNAF Paper 2007-0025CJ, Denver, CO (2007)

  • W.N. Sawka, M. McPherson, Electrical solid propellants: a safe, micro to macro propulsion technology. In 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2013-4168 (2013)

  • W.N. Sawka, A. Katzakian, C. Grix, Solid state digital propulsion cluster thrusters for small satellites, using high performance electrically controlled extinguishable solid propellants. In 19th Annual AIAA/USU Conference on Small Satellites, Paper SSC05-XI-3 (2005)

  • C. Scharlemann, T. York, Alternative propellants for pulsed plasma thruster. In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2002-4270, Indianapolis (2002)

  • C. Scharlemann, T. York, Pulsed plasma thruster using water propellant, Part I: design and investigation of thrust behavior. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2003-5022, Huntsville (2003)

  • C.A. Scharlemann, T.M. York, Mass flux measurements in the plume of a pulsed plasma thruster. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2006-4856, Sacramento (2006)

  • C. Scharlemann, T. York, H. Kamhawi, Pulsed plasma thruster using water, Part II: thruster operation and performance evaluation. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2003-5023, Huntsville (2003)

  • T. Schönherr, Investigation of performance and plasma dynamics of the pulsed plasma thruster ADD SIMP-LEX. Ph.D. Dissertation, Dept. of Advanced Energy, Univ. of Tokyo, Tokyo (2011)

  • T. Schönherr, A. Nawaz, G. Herdrich, H.P. Röser et al., Influence of the electrode shape on the performance of the pulsed MPD thruster SIMPLEX. J. Propul. Power 25(2), 380–386 (2009)

    Article  Google Scholar 

  • T. Schönherr, K. Komurasaki, G. Herdrich, Study on plasma creation and propagation in a pulsed magnetoplasmadynamic thruster. World Acad. Sci. Eng. Technol. 50, 557–563 (2011)

    Google Scholar 

  • T. Schönherr, F. Nees, Y. Arakawa et al., Characteristics of plasma properties in an ablative pulsed plasma thruster. Phys. Plasmas 20(3), 033503 (2013)

    Article  ADS  Google Scholar 

  • T. Schönherr, M. Stein, K. Komurasaki, G. Herdrich, Investigation of discharge arc phenomena in ablative PPT. IEPC-2015-79, Kobe (2015)

  • D. Simon, B. Land, J. Emhoff, Experimental evaluation of a micro liquid pulsed plasma thruster concept. In 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2006-4330, Sacramento (2006)

  • J. Skalden, D. Ilic, G. Herdrich, T. Schönherr, K. Komurasaki, H. Koizumi, Characterization and optimization of liquid-ablative and air-breathing PPT, Part I: thrust and discharge performance. In 35th International Electric Propulsion Conference, IEPC-2017-174, Georgia, USA, October (2017)

  • A. Solbes, R.J. Vondra, Performance study of a solid fuel-pulsed electric microthruster. In AIAA 9th Electric Propulsion Conference, Bethesda (1973)

  • G.G. Spanjers, K.A. Mcfall, F.S.G. Iii, et al., Investigation of propellant inefficiencies in a pulsed plasma thruster. In 32th Joint Propulsion Conference and Exhibit, AIAA paper 96-2723 (1996)

  • G.G. Spanjers, J.B. Malak, R.J. Leiweke et al., Effect of propellant temperature on efficiency in the pulsed plasma thruster. J. Propul. Power 14(4), 545–553 (1998a)

    Article  Google Scholar 

  • G.G. Spanjers, J.S. Lotspeich, K.A. Mcfall et al., Propellant losses because of particulate emission in a pulsed plasma thruster. J. Propul. Power 14(4), 554–559 (1998b)

    Article  Google Scholar 

  • W. Stygar, G. Gerdin, High frequency Rogowski coil response characteristics. IEEE Trans. Plasma Sci. 10(1), 40–44 (1982)

    Article  ADS  Google Scholar 

  • K. Szocik, K. Lysenko-Ryba, S. Banas, S. Mazur, Political and legal challenges in a Mars colony. Sp. Policy 38, 27–29 (2016)

    Article  ADS  Google Scholar 

  • H. Tang, C. Shi, X. Zhang et al., Pulsed thrust measurements using electromagnetic calibration techniques. Rev. Sci. Instrum. 82(3), 035118 (2011)

    Article  ADS  Google Scholar 

  • Y.C.F. Thio, J.T. Cassibry, T.E. Markusic, Pulsed electromagnetic acceleration of plasmas. NASA Sti/recon Technical Report N, March (2002)

  • P. Turchi, R. Leiweke, H. Kamhawi, Design of an inductively-driven pulsed plasma thruster. In 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 96-2731, July (1996)

  • R.J. Vondra, A final report on the LES-8/9 pulsed plasma thruster. In AIAA International Electric Propulsion Conference, AIAA-76-998, Florida, US (1976)

  • R.J. Vondra, One millipound pulsed plasma thruster development. In 16th IEPC, AIAA-1982-1877 New Orleans, LA, USA (1982)

  • R.J. Vondra, K.I. Thomassen, Flight qualified pulsed electric thruster for satellite control. In AIAA 10th Electric Propulsion Conference, no. 73-1067, NEVADA, US (1973)

  • J. Wang, D. Brinza, D. Young, J. Nordholt, J. Polk, M. Henry, R. Goldstein, J. Hanley, D. Lawrence, M.J. Shappirio, Deep space one investigations of ion propulsion plasma environment. Spacecr. Rock. 37(5), 545–555 (2000). https://doi.org/10.2514/2.3608

    Article  Google Scholar 

  • J. Wang, D. Brinza, M.J. Young, Three-dimensional particle simulations of ion propulsion plasma environment for deep space 1. Spacecr. Rock. 38(3), 433–440 (2001). https://doi.org/10.2514/2.3702

    Article  Google Scholar 

  • S. Wang, X. Liu, Z. Wu, K. Xie, Y. Cheng, N. Wang, Study on the thermal radiation mechanism in pulsed plasma thruster. In 34th International Electric Propulsion Conference, IEPC-2015-112, Kobe (2015)

  • W. Wang, L. Kong, J. Geng et al., Wall ablation of heated compound-materials into non-equilibrium discharge plasmas. J. Phys. D Appl. Phys. 50(7), 074005 (2017a)

    Article  ADS  Google Scholar 

  • S. Wang, L. Tian, W. Feng, T. Zhang, et al., μ-PPT electro-propulsion system development and first fight application. In 35th International Electric Propulsion Conference, IEPC-2017-179, Atlanta (2017b)

  • M.J. Wilson, S.S. Bushman, R.L. Burton, A compact thrust stand for pulsed plasma thrusters. In 25th International Electric Propulsion Conference, IEPC-97-122, Cleveland, Ohio, August (1997)

  • H. Xu, Y. He, K.L. Strobel et al., Flight of an aeroplane with solid-state propulsion. Nature 563(7732), 532 (2018)

    Article  ADS  Google Scholar 

  • L. Yang, X. Liu, W. Guo, Z. Wu, N. Wang, Simulation of parallel-plate pulsed plasma teflon thruster based on the electromechanical model. In The 2nd IEEE International Conference on Advanced Computer Control, Shenyang, China, March (2010)

  • L. Yang, X. Liu, Z. Wu et al., Study on the wall ablation of heated compound-materials into discharge plasmas based on a modified model. Appl. Phys. Lett. 104(8), 033503 (2014)

    Google Scholar 

  • L. Yang, G. Zeng, H. Tang et al., Numerical studies of wall–plasma interactions and ionization phenomena in an ablative pulsed plasma thruster. Phys. Plasmas 23(7), 073518 (2016)

    Article  ADS  Google Scholar 

  • T.M. York, R.G. Jahn, Pressure distribution in the structure of a propagating current sheet. Phys. Fluids 13(5), 1303–1309 (1970)

    Article  ADS  Google Scholar 

  • T.M. York, C. Zakrzwski, G. Soulas, Diagnostics and performance of a low-power MPD thruster with appliedmagnetic nozzle. J. Propul. Power 9(4), 553–560 (1993)

    Article  ADS  Google Scholar 

  • Z. Zhang, H. Tang, Y. Yang, M. Li, Electrostatic probe measurements in a 4 j pulsed plasma thruster. In 32nd International Electric Propulsion Conference, IEPC-2011-198, Wiesbaden (2011)

  • Z. Zhang, H. Tang, Y. Yang, M. Li, Electrostatic probe measurements in a 4 j pulsed plasma thruster. In 33rd IEPC International Electric Propulsion Conference, IEPC-2013-147, Washington D.C. (2013)

  • Z. Zhang, H. Tang, Z. Zhang, Q. Liu, S. Cao, Non-phase-difference rogowski coil for measuring pulsed plasma thruster discharge current. In 34th International Electric Propulsion Conference, Kobe, Japan, IEPC-2015-49 (2015)

  • Z. Zhang, J. Ren, H. Tang, W.Y.L. Ling, T.M. York, J. Cao, Direct investigation of near-surface plasma acceleration in a pulsed plasma thruster using a segmented anode. J. Phys. D Appl. Phys. 51(39), 395201 (2018a)

    Article  Google Scholar 

  • Z. Zhang, J. Ren, H. Tang, S. Xu, W.Y.L. Ling, J. Cao, Inter-electrode discharge of an ablative pulsed plasma thruster with asymmetric electrodes. Plasma Sources Sci. Technol. (2018b). https://doi.org/10.1088/1361-6595/aaf086

    Article  Google Scholar 

  • Z. Zhang, J. Ren, H. Tang et al., An ablative pulsed plasma thruster with a segmented anode. Plasma Sources Sci. Technol. 27(1), 015004 (2018c)

    Article  ADS  Google Scholar 

  • Y. Zhou, X. Liu, X. Zhang, Z. Wu, K. Xie, N. Wang, Experimental investigation on the ablation mechanism of HTPB propellant PPT. In 35th International Electric Propulsion Conference, IEPC-2017-322, Atlanta (2017)

  • J. Ziemer, E. Choueiri, D. Birx, Is the gas-fed PPT an electromagnetic accelerator? In An Investigation Using Measured Performance, AIAA Paper 1999-2289, June (1999)

  • B. Zypries, Space, the public, and politics. Sp. Policy 41, 73–74 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Emeritus Thomas M York at Ohio State University, Columbus, for his professional help on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibin Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Ling, W.Y.L., Tang, H. et al. A review of the characterization and optimization of ablative pulsed plasma thrusters. Rev. Mod. Plasma Phys. 3, 5 (2019). https://doi.org/10.1007/s41614-019-0027-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-019-0027-z

Keywords

Navigation