Skip to main content
Log in

Response of the magnetosphere–ionosphere system to sudden changes in solar wind dynamic pressure

Global magnetohydrodynamic modeling studies of geomagnetic sudden commencements

  • Review Paper
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

The geomagnetic sudden commencement (SC) is a plasma and magnetic field disturbance in the magnetosphere–ionosphere region, which appears as a response of this system to a sudden change in the solar wind dynamic pressures associated with shock and tangential discontinuity of solar wind. As this mechanism seems to be simple, the SC has been widely investigated based on observations in the region from the surface of the Earth to the magnetosphere. A schematic model of the SC was presented by Araki (Solar wind sources of magnetospheric ultra-low-frequency waves. American Geophysical Union, Washington, DC, pp 183–200, 1994), who compiled many observational results and theories related to this phenomenon. Recent advances in supercomputing allow us to present new numerical results including three-dimensional global current systems of the SC which cannot be obtained only by direct observations and theoretical analysis. The simulation study not only confirms the results of a previous model on the initial response of the magnetosphere–ionosphere system to solar wind changes (the preliminary impulse) but also presents new findings on dynamical processes in the magnetosphere–ionosphere system in the period following the initial response (the main impulse). Furthermore, the simulation study reveals the SC sequence in the context of break and recovery of the steady magnetosphere–ionosphere convection system. The transient flow vortex in the flank magnetosphere in the main impulse phase plays an essential role in recovering the convection system. This report describes the SC process from the viewpoint of the state transition of the magnetosphere–ionosphere compound system Tanaka (Space Sci Rev 133:1, https://doi.org/10.1007/s11214-007-9168-4, 2007).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

After Araki (1994)

Fig. 2

After Kikuchi et al. (1978)

Fig. 3

After Araki (1994)

Fig. 4

After Fujita et al. (2003a)

Fig. 5

After Araki (1994)

Fig. 6
Fig. 7
Fig. 8
Fig. 9

After Fujita et al. (2003b)

Fig. 10

After Fujita et al. (2003a)

Fig. 11

After Fujita and Tanaka (2006)

Fig. 12

After Yu and Ridley (2009)

Fig. 13

After Fujita and Tanaka (2006)

Similar content being viewed by others

References

  • W. Allan, K.B. Knox, A dipole field model for axisymmetric Alfvén waves with finite ionosphere conductivities. Planet. Space Sci. 27, 79–85 (1979)

    Article  ADS  Google Scholar 

  • T. Araki, Global structure of geomagnetic sudden commencements. Planet. Space Sci. 25, 373–384 (1977)

    Article  ADS  Google Scholar 

  • T. Araki, A physical model of the geomagnetic sudden commencement, in Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves, ed. by M.J. Engebretson, K. Takahashi, M. Scholer (American Geophysical Union, Washington, DC, 1994), pp. 183–200

    Google Scholar 

  • T. Araki, H. Nagano, Geomagnetic response to sudden expansions of the magnetosphere. J. Geophys. Res. 93, 3983–3988 (1988)

    Article  ADS  Google Scholar 

  • W. Baumjohann, R.A. Treumann, Basic Space Plasma Physics (Imperial College Press, London, 1997)

    MATH  Google Scholar 

  • P.J. Chi, C.T. Russell, Travel-time magnetoseismology: magnetospheric sounding by timing the tremors in space. Geophys. Res. Lett. 32, L18108 (2005). https://doi.org/10.1029/2005GL023441

    Article  ADS  Google Scholar 

  • P.J. Chi, C.T. Russell, J. Raeder, E. Zesta, K. Yumoto, H. Kawano, K. Kitamura, S.M. Petrinec, V. Angelopoulos, G. Le, M.B. Moldwin, Propagation of the preliminary reverse impulse of sudden commencements to low latitudes. J. Geophys. Res. 106, 18857–18864 (2001)

    Article  ADS  Google Scholar 

  • P.J. Chi, C.T. Russell, J. Raeder, E. Zesta, K. Yumoto, H. Kawano, K. Kitamura, S.M. Petrinec, V. Angelopoulos, G. Le, M.B. Moldwin, Reply to comment by T. Kikuchi and T. Araki on “Propagation of the preliminary reverse impulse of sudden commencements to low latitudes”. J. Geophys. Res. 107(A12), 1474 (2002). https://doi.org/10.1029/2002JA009369

    Article  Google Scholar 

  • S.G. Claudepierre, M. Wiltberger, S.R. Elkington, W. Lotko, M.K. Hudson, Magnetospheric cavity modes driven by solar wind dynamic pressure fluctuations. Geophys. Res. Lett. 36, L13101 (2009). https://doi.org/10.1029/2009GL039045

    Article  ADS  Google Scholar 

  • J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47 (1961)

    Article  ADS  Google Scholar 

  • M.J. Engebretson, D.L. Murr, W.J. Hughes, H. Lühr, T. Moretto, J.L. Posch, A.T. Weatherwax, T.J. Rosenberg, C.G. Maclennan, L.J. Lanzerotti, F. Marcucci, S. Dennis, G. Burns, J. Bitterly, M. Bitterly, A multipoint determination of the propagation velocity of a sudden commencement across the polar ionosphere. J. Geophys. Res. 104, 22433–22451 (1999)

    Article  ADS  Google Scholar 

  • J.A. Fedder, J.G. Lyon, The solar wind-magnetosphere–ionosphere current–voltage relationship. Geophys. Res. Lett. 14(8), 880–883 (1987). https://doi.org/10.1029/GL014i008p00880

    Article  ADS  Google Scholar 

  • J.A. Fejer, Atmospheric tides and associated magnetic effects. Rev. Geophys. 2(2), 275–309 (1964). https://doi.org/10.1029/RG002i002p00275

    Article  ADS  Google Scholar 

  • E. Friis-Christensen, Y. Kamide, A.D. Richmond, S. Matsushita, Interplanetary magnetic field control of high-latitude electric fields and currents determined from Greenland Magnetometer Data. J. Geophys. Res. 90(A2), 1325–1338 (1985). https://doi.org/10.1029/JA090iA02p01325

    Article  ADS  Google Scholar 

  • S. Fujita, T. Tanaka, Magnetospheric Plasma Processes During a Sudden Commencement Revealed from a Global MHD Simulation. in: Magnetospheric ULF Waves: Synthesis and New Directions ed. by K. Takahashi, P. J. Chi, R. E. Denton, R. L. Lysak. (2006). https://doi.org/10.1029/169GM05

  • S. Fujita, T. Tanaka, T. Kikuchi, K. Fujimoto, K. Hosokawa, M. Itonaga, A numerical simulation of the geomagnetic sudden commencement: 1. Generation of the field-aligned current associated with the preliminary impulse. J. Geophys. Res. 108(A12), 1416 (2003a). https://doi.org/10.1029/2002JA009407

    Article  Google Scholar 

  • S. Fujita, T. Tanaka, T. Kikuchi, K. Fujimoto, M. Itonaga, A numerical simulation of the geomagnetic sudden commencement: 2. Plasma processes in the main impulse. J. Geophys. Res. 108(A12), 1417 (2003b). https://doi.org/10.1029/2002JA009763

    Article  Google Scholar 

  • S. Fujita, T. Tanaka, T. Kikuchi, S. Tsunomura, A numerical simulation of a negative sudden impulse. Earth Planets Space 56, 463–472 (2004)

    Article  ADS  Google Scholar 

  • S. Fujita, T. Tanaka, T. Motoba, A numerical simulation of the geomagnetic sudden commencement: 3. A sudden commencement in the magnetosphere-ionosphere compound system. J. Geophys. Res. 110, A11203 (2005). https://doi.org/10.1029/2005JA011055

    Article  ADS  Google Scholar 

  • S. Fujita, H. Yamagishi, K.T. Murata, M. Den, T. Tanaka, A numerical simulation of a negative solar wind impulse: revisited. J. Geophys. Res. 117, A09219 (2012). https://doi.org/10.1029/2012JA017526

    Article  ADS  Google Scholar 

  • K.-H. Glassmeier, M. Hönisch, J. Untiedt, Ground-based and satellite observations of traveling magnetospheric convection twin vortices. J. Geophys. Res. 94, 2520–2528 (1989)

    Article  ADS  Google Scholar 

  • T.I. Gombosi, K.G. Powell, D.L. De Zeeuw, Axisymmetric modeling of cometary mass loading on an adaptively refined grid: MHD results. J. Geophys. Res. 99, 21525–21539 (1994)

    Article  ADS  Google Scholar 

  • X.-C. Guo, Y.-Q. Hu, C. Wang, Earth’s magnetosphere impinged by interplanetary shocks of different orientations. Chin. Phys. Lett. 22, 3221–3224 (2005). https://doi.org/10.1088/0256-307X/22/12/067

    Article  ADS  Google Scholar 

  • T. Hori, A. Shinbori, N. Nishitani, T. Kikuchi, S. Fujita, T. Nagatsuma, O. Troshichev, K. Yumoto, A. Moiseyev, K. Seki, Evolution of negative SI-induced ionospheric flows observed by SuperDARN King Salmon HF radar. J. Geophys. Res. 117, A12223 (2012). https://doi.org/10.1029/2012JA018093

    Article  ADS  Google Scholar 

  • Y.-Q. Hu, X.-C. Guo, G.-Q. Li, C. Wang, Z.-H. Huang, Oscillation of quasi-steady earth’s magnetosphere. Chin. Phys. Lett. 22, 2723–2726 (2005)

    Article  ADS  Google Scholar 

  • W.J. Hughes, The magnetopause, magnetotail, and magnetic reconnection, in Introduction to Space Physics, ed. by M. Kivelson, C.T. Russell (Cambridge Univerity Press, Cambridge, 1995), pp. 227–287

    Chapter  Google Scholar 

  • T. Iijima, T.A. Potemra, The amplitude distribution of field-aligned currents at northern high latitudes observed by Triad. J. Geophys. Res. 81(13), 2165–2174 (1976). https://doi.org/10.1029/JA081i013p02165

    Article  ADS  Google Scholar 

  • P. Janhunen, H.E.J. Koskinen, The closure of region-1 field-aligned current in MHD simulation. Geophys. Res. Lett. 24, 1419–1422 (1997)

    Article  ADS  Google Scholar 

  • J.A. Joselyn, B.T. Tsurutani, Geomagnetic sudden impulses and storm sudden commencements. A note on terminology. EOS 47, 1808–1809 (1990)

    Article  ADS  Google Scholar 

  • J.G. Kappenman, Storm sudden commencement events and the associated geomagnetically induced current risks to ground-based systems at low-latitude and midlatitude locations. Space Weather 1(3), 1016 (2003). https://doi.org/10.1029/2003SW000009

    Article  ADS  Google Scholar 

  • R. Kataoka, H. Fukunishi, S. Fujita, T. Tanaka, M. Itonaga, Transient response of the Earth’s magnetosphere to a localized density pulse in the solar wind: simulation of traveling convection vortices. J. Geophys. Res. 109, A03204 (2004). https://doi.org/10.1029/2003JA010287

    Article  ADS  Google Scholar 

  • K. Keika, R. Nakamura, W. Baumjohann, V. Angelopoulos, P.J. Chi, K.H. Glassmeier, M. Fillingim, W. Magnes, H.U. Auster, K.H. Fornaçon, G.D. Reeves, K. Yumoto, E.A. Lucek, C.M. Carr, I. Dandouras, Substorm expansion triggered by a sudden impulse front propagating from the dayside magnetopause. J. Geophys. Res. 114, A00C24 (2009). https://doi.org/10.1029/2008JA013445

    Article  Google Scholar 

  • A. Keiling, K. Takahashi, Review of Pi2 Models. Space Sci Rev. 161, 63–148 (2011). https://doi.org/10.1007/s11214-011-9818-4

    Article  ADS  Google Scholar 

  • K.A. Keller, M. Hesse, M. Kuznetsova, L. Rastätter, T. Moretto, T.I. Gombosi, D.L. DeZeeuw, Global MHD modeling of the impact of a solar wind pressure change. J. Geophys. Res. 107(A7) (2002). https://doi.org/10.1029/2001JA000060

  • T. Kikuchi, K.K. Hashimoto, I. Tomizawa, Y. Ebihara, Y. Nishimura, T. Araki, A. Shinbori, B. Veenadhari, T. Tanaka, T. Nagatsuma, Response of the incompressible ionosphere to the compression of the magnetosphere during the geomagnetic sudden commencements. J. Geophys. Res. Space Phys. 121 (2016). https://doi.org/10.1002/2015JA022166

  • T. Kikuchi, T. Araki, Transient response of uniform ionosphere and preliminary reverse impulse of geomagnetic storm sudden commencement. J. Atmos. Terr. Phys. 41, 917–925 (1979a)

    Article  ADS  Google Scholar 

  • T. Kikuchi, T. Araki, Horizontal transmission of the polar electric field to the equator. J. Atmos. Terr. Phys. 41, 927–936 (1979b)

    Article  ADS  Google Scholar 

  • T. Kikuchi, T. Araki, H. Maeda, K. Maekawa, Transmission of polar electric fields to the equator. Nature 273, 650 (1978)

    Article  ADS  Google Scholar 

  • K.-H. Kim, K.S. Park, T. Ogino, D.-H. Lee, S.-K. Sung, Y.-S. Kwak, Global MHD simulation of the geomagnetic sudden commencement on 21 October 1999. J. Geophys. Res. 114, A08212 (2009). https://doi.org/10.1029/2009JA014109

    Article  ADS  Google Scholar 

  • M.G. Kivelson, D.J. Southwood, Ionospheric travelling vortex generation by solar wind buffeting of the magnetosphere. J. Geophys. Res. 96, 1661–1667 (1991)

    Article  ADS  Google Scholar 

  • Y.R. Kubota, M. Kataoka, T. Den, T.Nagatsuma Tanaka, S. Fujita, Global MHD simulation of magnetospheric response of preliminary impulse to large and sudden enhancement of the solar wind dynamic pressure, Earth. Planets Space 67, 94 (2015). https://doi.org/10.1186/s40623-015-0270-7

    Article  ADS  Google Scholar 

  • D.-H. Lee, Dynamics of MHD wave propagation in the low-latitude magnetosphere. J. Geophys. Res. 101, 15371–15386 (1996)

    Article  ADS  Google Scholar 

  • D.-H. Lee, K. Kim, Compressional MHD waves in the magnetosphere: a new approach. J. Geophys. Res. 104, 12379–12385 (1999)

    Article  ADS  Google Scholar 

  • D.-H. Lee, R.L. Lysak, Magnetospheric ULF wave coupling in the dipole model: the impulsive excitation. J. Geophys. Res. 94, 17097–17103 (1989)

    Article  ADS  Google Scholar 

  • K. Maezawa, Magnetospheric convection induced by the positive and negative Z components of the interplanetary magnetic field: quantitative analysis using polar cap magnetic records. J. Geophys. Res. 81(13), 2289–2303 (1976)

    Article  ADS  Google Scholar 

  • W.B. Manchester IV, A. Ridley, T. Gombosi, D. De Zeeuw, Modeling the Sun–Earth propagation of a very fast CME. Adv. Space Res. 38, 253–262 (2006)

    Article  ADS  Google Scholar 

  • M. Meurant, J.-C. Gérard, C. Blockx, V. Coumans, B. Hubert, M. Connors, L.R. Lyons, E. Donovan, Comparison of intense nightside shock-induced precipitation and substorm activity. J. Geophys. Res. 110, A07228 (2005). https://doi.org/10.1029/2004JA010916

    Article  ADS  Google Scholar 

  • T. Moretto, A.J. Ridley, M.J. Engebretson, O. Rasmussen, High-latitude ionospheric response to a sudden impulse event during northward IMF conditions. J. Geophys. Res. 105, 2521–2531 (2000)

    Article  ADS  Google Scholar 

  • T. Nagata, S. Kokubun, A particular geomagnetic daily variation (S\(_q^p\)) in the polar regions on geomagnetically quiet days. Nature 195, 555–557 (1962). https://doi.org/10.1038/195555a0. (11 August 1962)

    Article  ADS  Google Scholar 

  • A. Nishida, Ionospheric screening effect and storm sudden commencement. J. Geophys. Res. 69, 1861–1874 (1964)

    Article  ADS  Google Scholar 

  • A. Nishida, Geomagnetic Diagnosis of the Magnetosphere (Springer, New York, 1978)

    Book  Google Scholar 

  • D.S. Ozturk, S. Zou, A.J. Ridley, J.A. Slavin, Modeling study of the geospace system response to the solar wind dynamic pressure enhancement on 17 March 2015. J.Geophys. Res. Space Phys. 123, 2974–2989 (2018). https://doi.org/10.1002/2017JA025099

    Article  ADS  Google Scholar 

  • E.N. Parker, Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958)

    Article  ADS  Google Scholar 

  • A.J. Ridley, A.D. Richmond, T.I. Gombosi, D.L. De Zeeuw, C.R. Clauer, Ionospheric control of the magnetospheric configuration: thermospheric neutral winds. J. Geophys. Res. 108(A8), 1328 (2003). https://doi.org/10.1029/2002JA009464

    Article  Google Scholar 

  • A.J. Ridley, D.L. De Zeeuw, W.B. Manchester, K.C. Hansen, The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection. Adv. Space Res. 38, 263–272 (2006)

    Article  ADS  Google Scholar 

  • C.T. Russell, M. Ginskey, Sudden impulses at low latitudes: transient response. Geophys. Res. Lett. 20, 1015–1018 (1993)

    Article  ADS  Google Scholar 

  • T. Saito, Geomagnetic pulsations. Space Sci. Rev. 10, 319–412 (1969)

    Article  ADS  Google Scholar 

  • A.A. Samsonov, D.G. Sibeck, Large-scale flow vortices following a magnetospheric sudden impulse. J. Geophys. Res. Space Phys. 118, 3055–3064 (2013). https://doi.org/10.1002/jgra.50329

    Article  ADS  Google Scholar 

  • A.A. Samsonov, D.G. Sibeck, J. Imber, MHD simulation for the interaction of an interplanetary shock with the Earth’s magnetosphere. J. Geophys. Res. 112, A12220 (2007). https://doi.org/10.1029/2007JA012627

    Article  ADS  Google Scholar 

  • A.A. Samsonov, D.G. Sibeck, Y. Yu, Transient changes in magnetospheric–ionospheric currents caused by the passage of an interplanetary shock: northward interplanetary magnetic field case. J. Geophys. Res. 115, A05207 (2010). https://doi.org/10.1029/2009JA014751

    Article  ADS  Google Scholar 

  • A.A. Samsonov, D.G. Sibeck, N.V. Zolotova, H.K. Biernat, S.-H. Chen, L. Rastaetter, H.J. Singer, W. Baumjohann, Propagation of a sudden impulse through the magnetosphere initiating magnetospheric Pc5 pulsations. J. Geophys. Res. 116, A10216 (2011). https://doi.org/10.1029/2011JA016706

    Article  ADS  Google Scholar 

  • A.A. Samsonov, D.G. Sibeck, B.M. Walsh, N.V. Zolotova, Sudden impulse observations in the dayside magnetosphere by THEMIS. J. Geophys. Res. Space Phys. 119, 9476–9496 (2014). https://doi.org/10.1002/2014JA020012

    Article  ADS  Google Scholar 

  • A.A. Samsonov, V.A. Sergeev, M.M. Kuznetsova, D.G. Sibeck, Asymmetric magnetospheric compressions and expansions in response to impact of inclined interplanetary shock. Geophys. Res. Lett. 42, 4716–4722 (2015). https://doi.org/10.1002/2015GL064294

    Article  ADS  Google Scholar 

  • R. Selvakumaran, B. Veenadhari, Y. Ebihara, Sandeep Kumar, D.S.V.V.D. Prasad, The role of interplanetary shock orientation on SC/SI rise time and geoeffectiveness. Adv. Space Res. 59(1425), 5 (2017)

    Google Scholar 

  • G.L. Siscoe, N.U. Crooker, G.M. Erickson, B.U.Ö. Sonnerup, K.D. Siebert, D.R. Weimer, W.W. White, N.C. Maynard, Global geometry of magnetospheric currents inferred from MHD simulations, in Magnetospheric Current Systems, ed. by S. Ohtani, R. Fujii, M. Hesse, R.L. Lysak (AGU, Washington, DC, 2000), pp. 41–52

    Chapter  Google Scholar 

  • S.P. Slinker, J.A. Fedder, W.J. Hughes, J.G. Lyon, Response of the ionosphere to a density pulse in the solar wind: simulation of travelling convection vortices. Geophys. Res. Lett. 26, 3549–3552 (1999)

    Article  ADS  Google Scholar 

  • T.R. Sun, C. Wang, J.J. Zhang, V.A. Pilipenko, Y. Wang, J.Y. Wang, The chain response of the magnetospheric and ground magnetic field to interplanetary shocks. J. Geophys. Res. Space Phys. 120 (2015). https://doi.org/10.1002/2014JA020754

  • T. Tamao, The structure of three-dimensional hydromagnetic waves in a uniform cold plasma. J. Geomag. Geoelectr. 16, 89–114 (1964a)

    Article  ADS  Google Scholar 

  • T. Tamao, A hydromagnetic interpretation of geomagnetic SSC. Rep. Ionos. Space Res. Jpn. 18, 16–31 (1964b)

    Google Scholar 

  • T. Tamao, Transmission and coupling resonance of hydromagnetic disturbances in the non-uniform Earth’s magnetosphere. Sci. Rep. Tohoku Univ. Ser. 5 Geophys. 17, 43–72 (1965)

    Google Scholar 

  • T. Tanaka, M. Watanabe, M. Den, S. Fujita, Y. Ebihara, T. Kikuchi, K.K. Hashimoto, R. Kataoka, Generation of field-aligned current (FAC) and convection through the formation of pressure regimes: correction for the concept of Dungey’s convection. J. Geophys. Res. 121 (2016). https://doi.org/10.1002/2016JA022822

  • T. Tanaka, Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomegeneous systems including strong background potential fields. J. Comput. Phys. 111, 381–389 (1994)

    Article  ADS  MATH  Google Scholar 

  • T. Tanaka, Generation mechanisms for magnetosphere–ionosphere current systems deduced from a three-dimensional MHD simulation of the solar wind-magnetosphere-ionosphere coupling processes. J. Geophys. Res. 100, 12057–12074 (1995)

    Article  ADS  Google Scholar 

  • T. Tanaka, Configuration of the magnetosphere–ionosphere convection system under northward IMF conditions with nonzero IMF \(B_y\). J. Geophys. Res. 104, 14683–14690 (1999)

    Article  ADS  Google Scholar 

  • T. Tanaka, Formation of magnetospheric plasma population regimes coupled with the dynamo process in the convection system. J. Geophys. Res. 108(A8), 1315 (2003). https://doi.org/10.1029/2002JA009668

    Article  Google Scholar 

  • T. Tanaka, Magnetosphere–ionosphere convection as a compound system. Space Sci Rev 133, 1 (2007). https://doi.org/10.1007/s11214-007-9168-4

    Article  ADS  Google Scholar 

  • T. Tanaka, Substorm auroral dynamics reproduced by the advanced global M–I coupling simulation, in Auroral Dynamics and Space Weather, Geophys. Monogr. Ser., vol. 215, ed. by Y. Zhang (AGU, Washington D. C, 2015), p. 177

    Chapter  Google Scholar 

  • S. Tsunomura, Numerical analysis of global ionospheric current system including the effect of equatorial enhancement. Ann. Geophys. 17, 692–706 (1999)

    Article  ADS  Google Scholar 

  • S. Tsunomura, T. Araki, Numerical analysis of equatorial enhancement of geomagnetic sudden commencement. Planet. Space Sci. 32, 599–604 (1984)

    Article  ADS  Google Scholar 

  • B.T. Tsurutani, W.D. Gonzalez, G.S. Lakhina, S. Alex, The extreme magnetic storm of 1–2 September 1859. J. Geophys. Res. 108, 1268 (2003). https://doi.org/10.1029/2002JA009504. A7

    Article  Google Scholar 

  • C.R. Wilson, M. Sugiura, Hydromagnetic interpretation of sudden commencements of magnetic storms. J. Geophys. Res. 66(12), 4097–4111 (1961). https://doi.org/10.1029/JZ066i012p04097

    Article  ADS  Google Scholar 

  • J. Wygant, F. Mozer, M. Temerin, J. Blake, N. Maynard, H. Singer, M. Smiddy, Large amplitude electric and magnetic field signatures in the inner magnetosphere during injection of 15 MeV electron drift echoes. Geophys. Res. Lett. 21, 1739–1742 (1994). https://doi.org/10.1029/94GL00375

    Article  ADS  Google Scholar 

  • Y. Yu, A.J. Ridley, The response of the magnetosphere-ionosphere system to a sudden dynamic pressure enhancement under southward IMF conditions. Ann. Geophys. 27, 4391–4407 (2009)

    Article  ADS  Google Scholar 

  • Y.-Q. Yu, A.J. Ridley, Understanding the response of the ionosphere-magnetosphere system to sudden solar wind density increases. J. Geophys. Res. 116, A04210 (2011). https://doi.org/10.1029/2010JA015871

    Article  ADS  Google Scholar 

  • K. Yumoto, V. Pilipenko, E. Fedorov, N. Kurneva, M. De Lauretis, K. Kitamura, Magnetospheric ULF wave phenomena stimulated by SSC. J. Geomag. Geoelectr. 49, 1179–1195 (1997)

    Article  ADS  Google Scholar 

  • X.Y. Zhang, Q.-G. Zong, Y.F. Wang, H. Zhang, L. Xie, S.Y. Fu, C.J. Yuan, C. Yue, B. Yang, Z.Y. Pu, ULF waves excited by negative/positive solar wind dynamic pressure impulses at geosynchronous orbit. J. Geophys. Res. 115, A10221 (2010). https://doi.org/10.1029/2009JA015016

    Article  ADS  Google Scholar 

  • X. Zhou, B.T. Tsurutani, Interplanetary shock triggering of nightside geomagnetic activity: substorms, pseudobreakups, and quiescent events. J. Geophys. Res. 106(A9), 18957–18967 (2001)

    Article  ADS  Google Scholar 

  • X.-Y. Zhou, R.J. Strangeway, P.C. Anderson, D.G. Sibeck, B.T. Tsurutani, G. Haerendel, H.U. Frey, J.K. Arballo, Shock aurora: FAST and DMSP observations. J. Geophys. Res. 108(A4), 8019 (2003). https://doi.org/10.1029/2002JA009701

    Article  Google Scholar 

  • S. Zou, D. Ozturk, R. Varney, A. Reimer, Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation. Geophys. Res. Lett. 44, 3047–3058 (2017). https://doi.org/10.1002/2017GL072678

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank T. Araki of Kyoto Univ., T. Kikuchi of Nagoya Univ., D.-H. Lee of Kyung Hee Univ., and R. Kataoka of Nat. Inst. Polar Res. I am also thankful to referees for constructive comments. This work was supported by JSPS KAKENHI Grant Numbers JP17K05671 and JP15H05815 (PSTEP). This work is one of the outcomes of the NIPR project KP301. The computations for this study were performed using supercomputers installed at the Polar Data Center of NIPR and “One Space Net” of NICT (National Institute of Information and Communication Technology). The production of this paper was supported by a NIPR publication subsidy. We would like to thank Editage (http://www.editage.jp) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Fujita.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by JSPS KAKENHI Grant Numbers JP17K05671 and JP15H05815.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujita, S. Response of the magnetosphere–ionosphere system to sudden changes in solar wind dynamic pressure. Rev. Mod. Plasma Phys. 3, 2 (2019). https://doi.org/10.1007/s41614-019-0025-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-019-0025-1

Keywords

Navigation