Skip to main content
Log in

Study of the concentrations of Kr and Ar in high-purity nitrogen of JUNO

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

In the JUNO, the LS serves as the medium for detecting neutrinos. When purifying the LS using HPN, it is essential to ensure low background levels of radioactive krypton and argon in the HPN

Methods

Using the low-temperature physical adsorption properties of activated carbon to adsorb and separate radioactive gases such as radon, krypton, and argon from nitrogen in a liquid nitrogen environment.

Results

Our results indicated that the \(^{85}\)Kr concentration in the HPN purified by HP activated carbon is 6.84 \(\upmu \)Bq/m\(^{3}\), and the \(^{39}\)Ar concentration is 3.6 \(\upmu \)Bq/m\(^{3}\) for overground HPN, while the \(^{85}\)Kr concentration is 31.4 \(\upmu \)Bq/m\(^{3}\) for underground HPN. The \(^{85}\)Kr concentration in the nitrogen purified by coconut shell activated carbon is 0.46 \(\upmu \)Bq/m\(^{3}\).

Conclusions

After adsorption with activated carbon, the content of \(^{85}\)Kr and \(^{39}\)Ar in HPN is lower than the 50 \(\upmu \)Bq/m\(^{3}\) required by JUNO. This work validates that the \(^{85}\)Kr and \(^{39}\)Ar concentrations in HPN is fit the JUNO requirement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.U.N.O. Collaboration, Juno physics and detector. Prog. Part. Nucl. Phys. 123, 103927 (2022). https://doi.org/10.1016/j.ppnp.2021.103927

    Article  CAS  Google Scholar 

  2. A. Fengpeng, A. Guangpeng, Neutrino physics with JUNO. J. Phys. G: Nucl. Part. Phys. 43(3), 030401 (2016). https://doi.org/10.1088/0954-3899/43/3/030401

    Article  CAS  Google Scholar 

  3. Y.B. Hsiunga, Reactor neutrino oscillations in Daya Bay. PoS NOW2022, 006 (2023). https://doi.org/10.22323/1.421.0006

  4. JUNO Collaboration: The design and technology development of the JUNO central detector (2023). arXiv:2311.17314 [physics.ins-det]

  5. P. Lombardi, M. Montuschi, Distillation and stripping pilot plants for the JUNO neutrino detector: design, operations and reliability. Nucl. Instrum. Methods Phys. Res. Sect. A 925, 6–17 (2019). https://doi.org/10.1016/j.nima.2019.01.071

    Article  ADS  CAS  Google Scholar 

  6. Y. Jiaxuan, F. Jian, Development of water extraction system for liquid scintillator purification of JUNO. Nucl. Instrum. Methods Phys. Res. Sect. A 1027, 166251 (2022). https://doi.org/10.1016/j.nima.2021.166251

    Article  CAS  Google Scholar 

  7. A. Abusleme, T. Adam, S. Ahmad, The design and sensitivity of JUNO’s scintillator radiopurity pre-detector OSIRIS. Eur. Phys. J. C 81, 973 (2021). https://doi.org/10.1140/epjc/s10052-021-09544-4

    Article  ADS  CAS  Google Scholar 

  8. L. Shuaijie, Y. Baobiao, L. Jiajie, The JUNO central detector filling and overflow system for the liquid scintillator (2020)

  9. R.C. Bansal, M. Goyal, Activated Carbon Adsorption (CRC Press, Boca Raton, 2005), p.520. https://doi.org/10.1201/9781420028812

    Book  Google Scholar 

  10. F. Shujuan, Z. Chongyang, Dynamic adsorption property of xenon on activated carbon and carbon molecular sieves. J. Nucl. Radiochem. 32(05), 274–279 (2010)

    Google Scholar 

  11. G. Liangtian, S. Yingxia, Study on the charcoal delay bed for radioactive noble gases. Radiat. Prot. 14(01), 15–24 (1994)

  12. S. Yingxia, G. Liangtian, W. Ruiyun, Study of adsorption of radioactive noble gases by activated carbon under engineering conditions. Radiat. Prot. 27(05), 302–307 (2007)

    Google Scholar 

  13. Y. Xianghui, Radon activity measurement of JUNO nitrogen. J. Instrum. 15(09), 09001 (2020). https://doi.org/10.1088/1748-0221/15/09/P09001

  14. Y. Xianghui, Nitrogen purification pilot plant of Jiangmen underground neutrino observatory. J. Instrum. 16(08), 08002 (2021). https://doi.org/10.1088/1748-0221/16/08/T08002

    Article  Google Scholar 

  15. L. Yongguo, Effect of gas composition on activated carbon adsorption for radioactive gas. Appl. Chem. Ind. (2021). https://doi.org/10.16581/j.cnki.issn1671-3206.20210127.030

    Article  Google Scholar 

  16. L. Meng, W. Guanyi, F. Sui, Highly accurate measurements of xenon stable isotope abundance on static gas mass spectrometer. J. Isot. 36, 351–357 (2023). https://doi.org/10.7538/tws.2022.youxian.107

    Article  Google Scholar 

  17. W. Jiang, K. Bailey, An atom counter for measuring \(^{81}\)Kr and \(^{85}\)Kr in environmental samples. Geochim. Cosmochim. Acta 91, 1–6 (2012). https://doi.org/10.1016/j.gca.2012.05.019

    Article  ADS  CAS  Google Scholar 

  18. P. Benetti, F. Calaprice, Measurement of the specific activity of 39Ar in natural argon. Nucl. Instrum. Methods Phys. Res. Sect. A 574(1), 83–88 (2007). https://doi.org/10.1016/j.nima.2007.01.106

    Article  ADS  CAS  Google Scholar 

  19. M. Pârvu, A. Chiriacescu, I. Lazanu, Short analysis of cosmogenic production of radioactive isotopes in argon as target for the next neutrino experiments. Radiat. Phys. Chem. 152, 129–136 (2018). https://doi.org/10.1016/j.radphyschem.2018.08.009

    Article  ADS  CAS  Google Scholar 

  20. Y. Depei, Measurement Uncertainty (National Defense Industry Press, Beijing, 1996)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA10010500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to HaiSheng Song or Boxiang Yu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Song, H., Ling, X. et al. Study of the concentrations of Kr and Ar in high-purity nitrogen of JUNO. Radiat Detect Technol Methods (2024). https://doi.org/10.1007/s41605-024-00460-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-024-00460-1

Keywords

Navigation