Skip to main content
Log in

Application of superconducting cavity tuner in dark photon dark matter search

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

In order to precisely control the resonant frequency of RF superconducting cavity to detect dark photon dark matter, and to be able to tune within a certain frequency range, it is necessary to design a low-temperature tuner for frequency control on the bare cavity.

Methods

Two type mechanical tuners have been designed for the 1.3 GHz single-cell bare cavity and 650 MHz single cell bare cavity. The tuner device tunes the frequency of RF superconducting cavity for the detection of dark photons and dark matter and measures its tuning range and accuracy in both room-temperature and low-temperature environments.

Results

The tuner for the 1.3 GHz cavity has a tuning accuracy of 1 Hz per step and a tuning range of 1.37 MHz at low temperature. The tuner for the 650 MHz cavity has a tuning range of 467 kHz at low temperatures, with a tuning accuracy of 1.77 Hz per step.

Conclusion

The designed tuner can meet the requirements of RF superconducting cavity tuning for detecting dark photons and dark matter, and its adjustable range, precision and stability ensure that the detection experiment can be carried out smoothly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Franciolini, A. Maharana, F. Muia, Hunt for light primordial black hole dark matter with ultrahigh-frequency gravitational waves. Phys. Rev. D 106, 103520 (2022). https://doi.org/10.1103/PhysRevD.106.103520

    Article  ADS  CAS  Google Scholar 

  2. D.J. Miller, The physics of the dark photon: a primer. Contemp. Phys. 62(2), 110 (2021). https://doi.org/10.1080/00107514.2021.1959647

    Article  ADS  Google Scholar 

  3. M. Graham, C. Hearty, M. Williams, Searches for dark photons at accelerators. Annu. Rev. Nucl. Part. Sci. 71(1), 37–58 (2021). https://doi.org/10.1146/annurev-nucl-110320-051823

    Article  ADS  CAS  Google Scholar 

  4. B. Giaccone, A. Berlin, I. Gonin, A. Grassellino, R. Harnik, Y. Kahn, T. Khabiboulline, A. Lunin, O. Melnychuk, A. Netepenko, R. Pilipenko, Y. Pischalnikov, S. Posen, O. Pronitchev, A. Romanenko, V. Yakovlev, Design of axion and axion dark matter searches based on ultra high Q SRF cavities (2022)

  5. Z. Tang, B. Wang, Y. Chen, Y. Zeng, C. Li, Y. Yang, L. Feng, P. Sha, Z. Mi, W. Pan, T. Zhang, Y. Jin, J. Hao, L. Lin, F. Wang, H. Xie, S. Huang, J. Shu, SRF cavity searches for dark photon dark matter: first scan results (2023)

  6. H. An, S. Ge, W.-Q. Guo, X. Huang, J. Liu, Z. Lu, Direct detection of dark photon dark matter using radio telescopes. Phys. Rev. Lett. 130(18), 181001 (2023). https://doi.org/10.1103/physrevlett.130.181001

    Article  ADS  CAS  PubMed  Google Scholar 

  7. M.E. Tobar, C.A. Thomson, W.M. Campbell, A. Quiskamp, J.F. Bourhill, B.T. McAllister, E.N. Ivanov, M. Goryachev, Comparing instrument spectral sensitivity of dissimilar electromagnetic haloscopes to axion dark matter and high frequency gravitational waves. Symmetry 14(10), 2165 (2022). https://doi.org/10.3390/sym14102165

    Article  ADS  Google Scholar 

  8. Y. Cheng, X.-G. He, F. Huang, J. Sun, Z.-P. Xing, Dark photon kinetic mixing effects for the CDF \(w\)-mass measurement. Phys. Rev. D 106, 055011 (2022). https://doi.org/10.1103/PhysRevD.106.055011

    Article  ADS  CAS  Google Scholar 

  9. J. Aebischer, W. Altmannshofer, E.E. Jenkins, A.V. Manohar, Dark matter effective field theory and an application to vector dark matter. J. High Energy Phys. 2022(6), 86 (2022). https://doi.org/10.1007/JHEP06(2022)086

    Article  MathSciNet  Google Scholar 

  10. R. Cervantes, G. Carosi, C. Hanretty, S. Kimes, B.H. LaRoque, G. Leum, P. Mohapatra, N.S. Oblath, R. Ottens, Y. Park, G. Rybka, J. Sinnis, J. Yang, Search for \(70 \mu \rm eV \) dark photon dark matter with a dielectrically loaded multiwavelength microwave cavity. Phys. Rev. Lett. 129, 201301 (2022). https://doi.org/10.1103/PhysRevLett.129.201301

    Article  ADS  CAS  PubMed  Google Scholar 

  11. A. Romanenko, R. Harnik, A. Grassellino, R. Pilipenko, Y. Pischalnikov, Z. Liu, O.S. Melnychuk, B. Giaccone, O. Pronitchev, T. Khabiboulline, D. Frolov, S. Posen, S. Belomestnykh, A. Berlin, A. Hook, Search for dark photons with superconducting radio frequency cavities. Phys. Rev. Lett. 130, 261801 (2023). https://doi.org/10.1103/PhysRevLett.130.261801

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Y. Zhu, M. Jewell, C. Laffan, X. Bai, S. Ghosh, E. Graham, S. Cahn, R.H. Maruyama, S. Lamoreaux, An improved synthetic signal injection routine for the Haloscope at Yale sensitive to axion cold dark matter (HAYSTAC). Rev. Sci. Instrum. 94(5), 054712 (2023). https://doi.org/10.1063/5.0137870

    Article  ADS  CAS  PubMed  Google Scholar 

  13. R. Cervantes, G. Carosi, S. Kimes, C. Hanretty, B. LaRoque, G. Leum, P. Mohapatra, N. Oblath, R. Ottens, Y. Park et al., Admx-orpheus first search for 70 \(\mu \)ev dark photon dark matter: detailed design, operations, and analysis. Phys. Rev. D 106(10), 102002 (2022)

    Article  ADS  CAS  Google Scholar 

  14. S. Belomestnykh, S. Posen, D. Bafia, S. Balachandran, M. Bertucci, A. Burrill, A. Cano, M. Checchin, G. Ciovati, L.D. Cooley, G.D.L. Semione, J. Delayen, G. Eremeev, F. Eremeev, F. Gerigk, B. Giaccone, D. Gonnella, A. Grassellino, A. Gurevich, W. Hillert, M. Iavarone, J. Knobloch, T. Kubo, W.K. Kwok, R. Laxdal, P.J. Lee, M. Liepe, M. Martinello, O.S. Melnychuk, A. Nassiri, A. Netepenko, H. Padamsee, C. Pagani, R. Paparella, U. Pudasaini, C.E. Reece, D. Reschke, A. Romanenko, M. Ross, K. Saito, J. Sauls, D.N. Seidman, N. Solyak, Z. Sung, K. Umemori, A.-M. Valente-Feliciano, W.V. Delsolaro, N. Walker, H. Weise, U. Welp, M. Wenskat, G. Wu, X.X. Xi, V. Yakovlev, A. Yamamoto, J. Zasadzinski, Key directions for research and development of superconducting radio frequency cavities (2022)

  15. I. Martin-Hoyo, F. Bouly, N. Gandolfo, C. Joly, R. Paparella, J.-L. Biarrotte, J.M. Martin-Sanchez, Optimized adaptive control for the myrrha linear accelerator: control system design for a superconducting cavity in a particle accelerator. IEEE Control Syst. Mag. 38(2), 44–79 (2018). https://doi.org/10.1109/MCS.2017.2786420

    Article  MathSciNet  Google Scholar 

  16. Y. Pischalnikov, D. Bice, A. Grassellino, T. Khabiboulline, O. Melnychuk, R. Pilipenko, S. Posen, O. Pronitchev, A. Romanenko, Operation of an srf cavity tuner submerged into liquid he, United States (2019). Research Org.: Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States). https://www.osti.gov/biblio/1843493

  17. Z. Gao, Y. He, W. Chang, T. Powers, W.-M. Yue, Z.-L. Zhu, Q. Chen, A new microphonics measurement method for superconducting RF cavities. Nucl. Instrum. Methods Phys. Res. Sect. A 767, 212–217 (2014). https://doi.org/10.1016/j.nima.2014.08.030

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the colleagues from the RF Group of IHEP for helping.

Funding

This work is supported by the National Key Research and Development Program of China under Grant No. 2020YFC2201501; YOUTH INNOVATION PROMOTION ASSOCIATION CAS NO.292022000038. Jing Shu is supported by Peking University under startup Grant No. 7101302974 and the National Natural Science Foundation of China under Grants No. 12025507 and No.12150015 and is supported by the Key Research Program of Frontier Science of the Chinese Academy of Sciences (CAS) under Grants No. ZDBS-LY-7003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghui Mi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Mi, Z., Sha, P. et al. Application of superconducting cavity tuner in dark photon dark matter search. Radiat Detect Technol Methods (2024). https://doi.org/10.1007/s41605-024-00457-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-024-00457-w

Keywords

Navigation