Skip to main content
Log in

An evaluation method for nuclear radiation detection performance of glass scintillator

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

Glass is a potential choice for the scintillator in Hadronic calorimetry (HCAL) of the CEPC. It requires sophisticated instruments and suitable methods to obtain scintillation properties of the glasses in the first time. It is necessary to establish an evaluation method for nuclear radiation detection performance of glass scintillator.

Methods

The spectroscopy research of the glass includes transmission/absorption spectrum and emission spectrum. The time characteristics include rise time, scintillation decay time and afterglow. The scintillation properties include light yield, energy resolution and minimum ionizing particle (MIP) response. And a new method for measuring the low light yield of glass scintillators is proposed.

Results

We have built a complete performance test system and evaluation method, which can evaluate the nuclear radiation detection performance of different glass scintillators.

Conclusion

By continuously improving the composition and preparation process of the glass, it can provide potential possibilities for the application in the high-energy physics experiment and nuclear radiation detection fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Phunpueok, V. Thongpool, S. Jaiyen, H.S. Hsu, Comparison of Scintillation Light Yield of CWO and BGO Single Crystals for Gamma Ray Detection. Appl. Mech. Mater. 901, 89–94 (2020)

    Article  Google Scholar 

  2. P. Hu, Z.H. Hua, L.S. Ma, S. Qian, Q. Wu, Z.G. Wang, Study on the optimized energy resolution of scintillator detectors based on SiPMs and LYSO:Ce. JINST 17, T09010 (2022)

    Article  Google Scholar 

  3. S. Peng, Z.H. Hua, Q. Wu, J.F. Han, S. Qian, Z.G. Wang, Q.H. Wei, L.S. Qin, L.S. Ma, M. Yan, R.Q. Song, Piled-up neutron-gamma discrimination system for CLLB using convolutional neural network. JINST 17, T08001 (2022)

    Article  Google Scholar 

  4. Z. Wang, H. Guo, S. Qian, Y. Zhu, P. Hu, Q. Wu, P. Chen, L. Ma, S. Peng, L. Zhang, Z. Ning, Z. Zhang, Performance study of GAGG: Ce scintillator for gamma and neutron detection. JINST 15, C06031 (2020)

    Article  CAS  Google Scholar 

  5. A. Sato, M. Koshimizu, Y. Fujimoto, K. Asai, Development of plastic scintillators doped with silole-based aggregation-induced emission phosphors for scintillation light yield improvement. Opt. Mater. 136, 113493 (2023)

    Article  CAS  Google Scholar 

  6. J.J. Xie, Y. Shi, L.C. Fan, Z.B. Xu, Microstructure and luminescent properties of \(Ce: Lu_2SiO_5\) ceramic scintillator by spark plasma sintering. Opt. Mater. 35, 744–747 (2013)

    Article  ADS  CAS  Google Scholar 

  7. T.A. Collaboration, Observation of a new particle in the search for the standard model Higgs boson with the atlas detector at the lhc. Phys. Lett. B 716, 1–29 (2012)

    Article  ADS  Google Scholar 

  8. T.C. Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the lhc. Phys. Lett. B 716, 30–61 (2012)

    Article  ADS  Google Scholar 

  9. T.C.S. Group, CEPC conceptual design report: volume 2 physics & detector (2018)

  10. H.L. Tran, K. Krüger, F. Sefkow, S. Green, J. Marshall, M. Thomson, F. Simon, Software compensation in particle flow reconstruction. Eur. Phys. J. C 77, 698–710 (2017)

    Article  ADS  PubMed  Google Scholar 

  11. M.A. Thomson, Particle flow calorimetry and the pandora PFA algorithm. Nucl. Instrum. Meth. A 611, 25 (2009)

    Article  ADS  CAS  Google Scholar 

  12. L. Li, Q. Shan, W. Jia, B. Yu, Y. Liu, Y. Shi, T. Hu, J. Jiang, Optimization of the CEPC-AHCAL scintillator detector cells. JINST 16, P03001 (2021)

  13. S. Agostinelli, J. Allison et al., Geant4-a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003)

    Article  ADS  CAS  Google Scholar 

  14. D. Du, Y. Liu, Development of a novel highly granular hadronic calorimeter with scintillating glass tiles, in 41st International Conference on High Energy physics - ICHEP2022

  15. G. Aydın, Simulation study for the energy resolution performances of homogenous calorimeters with scintillator-photodetector combinations. Adv. High Energy Phys. 3, 1–11 (2018)

    Article  ADS  Google Scholar 

  16. C. Bueno, R. Buchanan, H. Berger, Luminescent glass design for high energy real-time radiography luminescent glass. Proc. SPIE Int. Soc. Opt. Eng. 1327, 79–91 (1990)

    ADS  CAS  Google Scholar 

  17. G.C. Tyrrell, Phosphors and scintillators in radiation imaging detectors. Nucl. Instrum. 546, 180–187 (2005)

    Article  CAS  Google Scholar 

  18. Y. Zhu, S. Qian, Z.G. Wang, H. Guo, L.S. Ma, Z.L. Wang, Q. Wu, Scintillation properties of GAGG ceramic and single crystal. Opt. Mater. 105, 109964 (2020)

    Article  CAS  Google Scholar 

  19. Wu Q, Qian S. The LYSO scintillation light measurement with an ultra-fast MCP-PMT, in International conference on technology and instrumentation in particle physics (2021)

  20. L.S. Ma, G.R. Huang, Z.H. Hua, M.C. Jin, Z. Jin, S.L. Liu, S. Qian et al., R & D of a novel single anode fast timing MCP-PMT. Nucl. Instrum. Meth. A 1041, 167333 (2022)

    Article  CAS  Google Scholar 

  21. K. Kamada, T. Yanagida, T. Endo, K. Tsutumi, Y. Usuki, M. Nikl, Y. Fujimoto, A. Fukabori, A. Yoshikawa, 2inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. J. Cryst. Growth 352, 88–90 (2012)

    Article  ADS  CAS  Google Scholar 

  22. X.Y. Sun, X.J. Liu, Y.T. Wu, Z.H. Xiao, Q. Chen, W.f. Wang, Q.M. Yang, Enhanced emission intensity of \(Ce^{3+}\)-doped aluminoborosilicate glasses prepared in air. Ceram. Int. 46, 4035–4038 (2020)

  23. M.V. Nemallapudi, S. Gundacker, P. Lecoq, E. Auffray, A. Ferri, A. Gola, C. Piemonte, Sub-100 ps coincidence time resolution for positron emission tomography with LSO: Ce codoped with Ca. Phys. Med. Biol. 60, 4635–4649 (2015)

  24. T. Yanagida, H. Masai, M. Koshimizu, N. Kawaguchi, Scintillation properties of Sn-doped yttrium aluminum garnet (YAG). Sens. Mater 31, 1225–1231 (2019)

  25. T. Yanagida, T. Kato, D. Nakauchi, N. Kawaguchi, Fundamental aspects, recent progress and future prospects of inorganic scintillators. Jpn. J. Appl. Phys. 62, 010508 (2023)

    Article  ADS  CAS  Google Scholar 

  26. K. Kamada, T. Endo, K. Tsutumi, T. Yanagida, Y. Fujimoto, A. Fukabori, A. Yoshikawa, J. Pejchal, M. Nikl, Composition engineering in cerium-doped \((Lu, Gd)_3(Ga, Al)_5O_{12}\) single-crystal scintillators. Cryst. Growth Des. 11, 4484–4490 (2011)

  27. T. Wu, Z.H. Hua, G. Tang, H.Y. Ban, H. Cai, J.F. Han et al., Enhanced photoluminescence quantum yield of \(Ce^{3+}\)-doped aluminum-silicate glasses for scintillation application. J. Am. Ceram. Soc. 106, 476–487 (2023)

    Article  CAS  Google Scholar 

  28. L. Wang, Application of long afterglow material in highway engineering, in 2nd International Conference on Material Engineering and Application (2015)

  29. W. Drozdowski, K. Brylew, M. Witkowski, A. Wojtowicz, P. Solarz, K. Kamada, A. Yoshikawa, Studies of light yield as a function of temperature and low temperature thermoluminescence of Gd3Al2Ga3O12: Ce scintillator crystals. Opt. Mater. 36, 1665–1669 (2014)

    Article  ADS  CAS  Google Scholar 

  30. R.H. Mao, L.Y. Zhang, R.Y. Zhu. Crystals for the HHCAL detector concept, in IEEE Nuclear Science Symposium Conference Record. 1911–1977 (2011)

  31. Z.M. Ji, H.H. Ni, L.Y. Yuan, J.F. Chen, S.H. Wang, Investigation of optical transmittance and light response uniformity of 600-mm-long BGO crystals. Nuclear 753, 143–148 (2014)

    CAS  Google Scholar 

  32. M. Nikl, Scintillation detectors for X-rays. Meas. Sci. Technol. 17, R37–R54 (2006)

  33. D.J. Du, Y. Liu, Development of a novel highly granular hadronic calorimeter with scintillating glass tiles. Instruments 6, 32 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

This paper is supported by National Natural Science Foundation of China (No. 12175253, 12335012) and the Program of Science Technology Service Network of Chinese Academy of Science, Youth Innovation Promotion Association CAS. The authors thank to the efforts of the Large Area Glass Scintillator Collaboration in glass research and development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Qian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, Z., Qian, S., Cai, H. et al. An evaluation method for nuclear radiation detection performance of glass scintillator. Radiat Detect Technol Methods (2024). https://doi.org/10.1007/s41605-024-00453-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-024-00453-0

Keywords

Navigation