Skip to main content

Advertisement

Log in

Geant4 application for efficiency simulation of PbF2 based calorimeters

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

This study aims to create a new tool for fast computer simulations allowing one to design advanced electromagnetic calorimeters with the required properties. The application must calculate the calorimeter efficiency and measure the particles' energies, momenta and interaction time to detect the particles. This application should become the basis for a new technology of positron emission tomography.

Methods

To solve the problem, a new C++ application based on Geant4 simulation toolkit has been developed. To monitor the response of calorimeters to different types of primary particles, we used different auxiliary Geant4 classes. In addition, we compare the simulation results for the detectors of three different setups, taking into account the detection of both electrons and gamma-quanta, and analyze their efficiency. To evaluate the capability of calorimeters to work under radiation load, we use an experimentally measured transmission function of radiation-damaged PbF2.

Results

Three calorimeter setups exploiting PbF2 were simulated with a new C++ application based on Geant4. We showed that such type of calorimeter has an energy resolution of \({{4.1\% } \mathord{\left/ {\vphantom {{4.1\% } {\sqrt {E_{{e^{ + } }} [{\text{GeV}}]} }}} \right. \kern-0pt} {\sqrt {E_{{e^{ + } }} [{\text{GeV}}]} }}\) and good linearity of response for GeV positrons measurements. The efficiency of such structures is found to be approximately 20% for gamma photons’ detection. The multilayered structure based on gamma-quanta detection has been proven to be more efficient. It was shown that for the total ionizing dose of 30 krad the Cherenkov light yield decreases by up to two times for 14 cm long PbF2 crystals, while for the shorter ones (2.5 and 1.5 cm) this effect is almost negligible.

Conclusions

We present a new user application in Geant4 for fast simulation of complex structures designed for detection of different high-energy neutral and charged particles. Simulation of calorimeter interaction with 103 of 3 GeV positrons takes 20 min on usual laptop, while for 105 511 keV gamma photons it takes 1 min on average. This application allows one to evaluate the efficiency of electromagnetic calorimeters exploiting lead fluoride crystals. Our results pave the way for advanced particle energy measurements, including those used in rapidly developing medical applications such as positron emission tomography, single-photon emission computed tomography etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. ECFA Detector R&D Roadmap Process Group, The 2021 ECFA detector research and development roadmap. Geneva, CERN-ESU-017 (2020).

  2. B. Dolgoshein, Transition radiation detectors. Nucl. Instr. Meth. A 326, 434 (1993)

    Article  ADS  Google Scholar 

  3. A. Andronic, J.P. Wessels, Transition radiation detectors. Nucl. Instr. Meth. A 666, 130 (2012)

    Article  ADS  Google Scholar 

  4. E. Nappi, Advances in charged particle identification techniques. Nucl. Instrum. Methods A 628, 1 (2011)

    Article  ADS  Google Scholar 

  5. C. Lippmann, Particle identification. Nucl. Instr. Meth. A 666, 148 (2012)

    Article  ADS  Google Scholar 

  6. C. Arnaboldi, C. Brofferio, O. Cremonesi et al., A novel technique of particle identification with bolometric detectors. Astropart. Phys. 34, 797 (2011)

    Article  ADS  Google Scholar 

  7. A. Di Mauro, Particle identification methods other than RICH. Nucl. Instr. Meth. A 952, 162124 (2020)

    Article  Google Scholar 

  8. K. Akiba, M. Artuso, R. Badman et al., Charged particle tracking with the Timepix ASIC. Nucl. Instr. Meth. A 661, 31 (2012)

    Article  ADS  Google Scholar 

  9. J. Alozy, N. Belyaev, M. Campbell et al., Identification of particles with Lorentz factor up to 104 with Transition Radiation Detectors based on micro-strip silicon detectors. Nucl. Instr. Meth. A 927, 1 (2019)

    Article  ADS  Google Scholar 

  10. S.A. Sedykh, J.R. Blackburn, B.D. Bunker et al., Electromagnetic calorimeters for the BNL muon (g-2) experiment. Nucl. Instr. Meth. A 455, 346 (2000)

    Article  ADS  Google Scholar 

  11. M. Beddo, E. Bielick, T. Fornek et al., The STAR barrel electromagnetic calorimeter. Nucl. Instr. Meth. A 499, 725 (2003)

    Article  ADS  Google Scholar 

  12. N. Akchurin et al., Hadron and jet detection with a dual-readout calorimeter. Nucl. Instr. Meth. A 537, 537 (2005)

    Article  ADS  Google Scholar 

  13. L. Bandiera, V. Haurylavets, V. Tikhomirov, Compact electromagnetic calorimeters based on oriented scintillator crystals. Nucl. Instr. Meth. A 936, 124 (2019)

    Article  ADS  Google Scholar 

  14. D. R. Schaart, Physics and technology of time-of-flight PET detectors, Phys. Med. Biol. 66, 09TR01 (2021).

  15. J. Grange, V. Guarino, P. Winter et al. (E989 Collaboration), Muon (g-2) Technical Design Report, arXiv:1501.06858v2 (2018).

  16. T. Albahri, A. Anastasi, A. Anisenkov et al., Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g-2 experiment. Phys. Rev. D 103, 072002 (2021)

    Article  ADS  Google Scholar 

  17. J. Allison, K. Amako, J. Apostolakis et al., Recent developments in Geant4. Nucl. Instr. Meth. A 835, 186 (2016)

    Article  ADS  Google Scholar 

  18. J. Allison, K. Amako, J. Apostolakis et al., Geant4 developments and applications. IEEE Trans. Nucl. Sci. 53, 270 (2006)

    Article  ADS  Google Scholar 

  19. S. Agostinelli, J. Allison, K. Amako et al., Geant4 - a simulation toolkit. Nucl. Instrum. Meth. A 506, 250 (2003)

    Article  ADS  Google Scholar 

  20. D.D. DiJulio, C.P. Cooper-Jensen, H. Björgvinsdóttir, Z. Kokai, P.M. Bentley, High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources. Phys Rev. ST - AB 19, 053501 (2016)

    ADS  Google Scholar 

  21. G. Alexander, J. Barley, Y. Batygin et al., Observation of polarized positrons from an undulator-based source. Phys. Rev. Lett. 100, 210801 (2008)

    Article  ADS  Google Scholar 

  22. D. Costanzo, A. Dell’Acqua, M. Gallas, et al., The GEANT4-based simulation software of the ATLAS detector, IEEE Nuclear Science Symposium Conference Record, San Diego, CA, 5 (2006).

  23. G. Aad et al., (ATLAS collaboration), The ATLAS simulation Infrastructure. Eur. Phys. J. C 70, 823 (2010)

    Article  ADS  Google Scholar 

  24. K. Abdel-Waged, N. Felemban, V.V. Uzhinskii, GEANT4 hadronic cascade models analysis of proton and charged pion transverse momentum spectra from p + Cu and Pb collisions at 3, 8, and 15 GeV/c. Phys. Rev. C 84, 014905 (2011)

    Article  ADS  Google Scholar 

  25. A.A. Savchenko, A.A. Tishchenko, S.B. Dabagov et al., Geant4 simulations of the lead fluoride calorimeter. Nucl. Instr. Meth. B 402, 256 (2017)

    Article  ADS  Google Scholar 

  26. X. Han, L. Wei, X. Huang et al., Simulation research on time resolution based on Cherenkov radiation. Radiat. Detect Technol. Methods 5, 421–429 (2021)

    Article  Google Scholar 

  27. M.B. Hahn, S. Meyer, H.-J. Kunte et al., Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: A general approach applicable to other radiation sources and biological targets. Phys. Rev. E 95, 052419 (2017)

    Article  ADS  Google Scholar 

  28. K. Murase, K. Ioka, S. Nagataki, T. Nakamura, High-energy cosmic-ray nuclei from high- and low-luminosity gamma-ray bursts and implications for multimessenger astronomy. Phys. Rev. D 78, 023005 (2008)

    Article  ADS  Google Scholar 

  29. S. Abe et al., (KamLAND Collaboration), Production of radioactive isotopes through cosmic muon spallation in KamLAND. Phys. Rev. C 81, 025807 (2010)

    Article  ADS  Google Scholar 

  30. M.N. Polyanskiy, Refractive index database. https://refractiveindex.info/. Accessed 27 Feb 2023

  31. Crystran Ltd., Lead Fluoride (PbF2) Data Sheet. https://www.crystran.co.uk/optical-materials/lead-fluoride-pbf2. Accessed 27 Feb 2023

  32. A. Cemmi et al., Radiation study of lead fluoride crystals. JINST 17, T05015 (2022)

    Article  Google Scholar 

  33. Hamamatsu Photonics, MPPC S14160/S14161 series Data Sheet. https://www.hamamatsu.com/content/dam/hamamatsu-photonics/sites/documents/99_SALES_LIBRARY/ssd/s14160_s14161_series_kapd1064e.pdf. Accessed 27 Feb 2023

  34. A.T. Fienberg, L.P. Alonzi, A. Anastasi et al., Studies of an array of PbF2 Cherenkov crystals with large-area SiPM readout. Nucl. Instr. Meth. A 783, 12 (2015)

    Article  ADS  Google Scholar 

  35. E. Bagli, M. Asai, A. Dotti, L. Pandola, M. Verderi, Allowing for crystalline structure effects in Geant4. Nucl. Instr. Meth. B. 402, 304–307 (2017)

    Article  ADS  Google Scholar 

  36. E. Bagli et al., Simulation of orientational coherent effects via Geant4, J. Phys.: Conf. Ser 898, 042041 (2017).

  37. E. Garutti, Yu. Musienko, Radiation damage of SiPMs. Nucl. Inst. Meth. A 926, 69 (2019)

    Article  ADS  Google Scholar 

  38. DuPont, The High-Performance Acetal Resin. http://www.dupont.com/products-and-services/plastics-polymers-resins/thermoplastics/brands/delrin-acetal-resin.html. Accessed 27 Feb 2023

  39. A. Anastasi, D. Babusci, G. Cantatore et al., The calibration system of the new g−2 experiment at Fermilab. Nucl. Instr. Meth. A 824, 716 (2016)

    Article  ADS  Google Scholar 

  40. R. Brun and F. Rademakers, ROOT - An Object Oriented Data Analysis Framework, Proceedings AIHENP'96 Workshop, Lausanne, Sep. 1996, Nucl. Inst. Meth. A 389, 81–86 (1997).

  41. “ROOT” [software], Release 6.26/04, 16/06/2022. https://github.com/root-project/root/tree/v6-26-04. Accessed 18 July 2022

Download references

Acknowledgements

This work was supported by the Ministry of Science and Higher Education of the Russian Federation, projects № FZWG-2020-0032 (2019-1569) and № FSWU-2023-0075.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Savchenko.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savchenko, A.A., Tishchenko, A.A. Geant4 application for efficiency simulation of PbF2 based calorimeters. Radiat Detect Technol Methods 7, 435–446 (2023). https://doi.org/10.1007/s41605-023-00399-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-023-00399-9

Keywords

Navigation