Skip to main content
Log in

The broadband laser source and an active beam stabilization device for laser calibration systems

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

Currently, the calibration for astronomical telescopes requires a broad wavelength range of several hundred nanometers. Therefore, a simple and compact wavelength broadening device is applied to generate a variety of wavelengths. In addition, a beam stabilization system is designed to automatically correct the beam deviation due to vibration and temperature fluctuation.

Methods

We broaden the laser spectrum by nonlinear effect between the noble gas in a hollow-core fiber and the laser electric field. By selecting the species and pressure of the noble gases, one can control the spectral broadening. The active beam stabilization system consists of two mirror mounts with motorized actuators and two CCD cameras. After acquiring the centroid of the laser beam and comparing it with the target position, an algorithm is implemented to correct the beam pointing.

Results

Both experimental and simulation results show that the spectral range of the laser is greatly broadened. Besides, we have attained the phase of pulses. These parameters can be used to monitor the laser’s running status over time. The active stabilization system can quickly correct the deviation of beam pointing and simultaneously obtain the beam profile, allowing for nominally perfect control of the beam.

Conclusion

In our design, both the broadband laser source and beam stabilizer are involved in the laser calibration system, providing us with various wavelengths and a high-precision pointing with outstanding intrinsic long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Lovis, M. Mayor, F. Pepe et al., An extrasolar planetary system with three Neptune-mass planets. Nature 441, 305 (2006). https://doi.org/10.1038/nature04828

    Article  ADS  Google Scholar 

  2. Z. Cao, A future project at Tibet: the large high altitude air shower observatory (LHAASO). Chin. Phys C 34, 249 (2010). https://doi.org/10.1088/1674-1137/34/2/018

    Article  ADS  Google Scholar 

  3. J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl. Instr. and Meth. A 523, 50 (2004). https://doi.org/10.1016/j.nima.2003.12.012

    Article  ADS  Google Scholar 

  4. R. Carlberg, An overview on extremely large telescope projects. PoS of IAU 1(S232), 25 (2005). https://doi.org/10.1017/S1743921306000238

    Article  Google Scholar 

  5. B. Fick et al., The central laser facility at the pierre auger observatory. JINST 1, P11003 (2006). https://doi.org/10.1088/1748-0221/1/11/P11003

    Article  ADS  Google Scholar 

  6. F. Aharonian, Q. An, Axikegu, et al., Reconstruction of Cherenkov image by multiple telescopes of LHAASO-WFCTA. Radiat Detect Technol Methods 6, 544 (2022). https://doi.org/10.1007/s41605-022-00342-4

    Article  Google Scholar 

  7. L. Chen et al., Application of the nitrogen laser calibration system in LAASO-WFCTA. PoS ICRC2021 (2021). https://doi.org/10.22323/1.395.0269

    Article  Google Scholar 

  8. Q.N. Sun et al., The YAG lidar system applied in LHAASO. PoS ICRC2021 (2021). https://doi.org/10.22323/1.395.0272

    Article  Google Scholar 

  9. W.X. Pi et al., Extinction coefficients of surface atmospheric aerosol above LHAASO. Chin Phys C 43, 085001 (2019). https://doi.org/10.1088/1674-1137/43/8/085001

    Article  ADS  Google Scholar 

  10. M. Nisoli, S. De Silvestri, O. Svelto, Generation of high energy 10 fs pulses by a new pulse compression technique. Appl Phys Lett 68, 2793 (1996). https://doi.org/10.1063/1.116609

    Article  ADS  Google Scholar 

  11. Z. Cao et al., Introduction to large high altitude air shower observatory (LHAASO). Chin Astron Astrophys 43, 457 (2019). https://doi.org/10.1016/j.chinastron.2019.11.001

    Article  ADS  Google Scholar 

  12. S. Yang et al., Automatic compensation of thermal drift of laser beam through thermal balancing based on different linear expansions of metals. Results Phys 13, 102201 (2019). https://doi.org/10.1016/j.rinp.2019.102201

    Article  Google Scholar 

  13. C. Rolland, P.B. Corkum, Compression of high-power optical pulses. J Opt Soc Am B 5, 641 (1988). https://doi.org/10.1364/JOSAB.5.000641

    Article  ADS  Google Scholar 

  14. M. Nisoli et al., A novel-high energy pulse compression system: generation of multigigawatt sub-5-fs pulses. Appl Phys B 65, 189 (1997). https://doi.org/10.1007/s003400050263

    Article  ADS  Google Scholar 

  15. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, Ch. Spielmann, S. Sartania, F. Krausz, Compression of high-energy laser pulses below 5 fs. Opt Lett 22, 522 (1997). https://doi.org/10.1364/OL.22.000522

    Article  ADS  Google Scholar 

  16. E.A.J. Marcatili, R.A. Schmeltzer, Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst Tech J 43, 1783 (1964). https://doi.org/10.1002/j.1538-7305.1964.tb04108.x

    Article  Google Scholar 

  17. K.W. De Long, R. Trebino, J. Hunter, W EWhite, Frequency-resolved optical gating with the use of second-harmonic generation. J Opt Soc Am B 11, 2206 (1994). https://doi.org/10.1364/JOSAB.11.002206

    Article  ADS  Google Scholar 

  18. X.-H. Ma et al., Chapter 1 LHAASO instruments and detector technology. Chin Phys C 46, 030001 (2022). https://doi.org/10.1088/1674-1137/ac3fa6

    Article  ADS  Google Scholar 

  19. Y. Wu, D. French, I. Jovanovic, Passive beam pointing stabilization. Opt Lett 35, 250 (2010). https://doi.org/10.1364/OL.35.000250

    Article  ADS  Google Scholar 

  20. C.L. Ding, D.Z. Zhu, Z. Wei, M.B. Tang, C.F. Kuang, X. Liu, A compact and high-precision method for active beam stabilization system. Opt Commun 500, 127328 (2021). https://doi.org/10.1016/j.optcom.2021.127328

    Article  Google Scholar 

  21. Z. Yu, K. Zhu, M. Gu et al., Control and monitoring software of LHAASO DAQ. Radiat Detect Technol Methods 6, 227 (2022). https://doi.org/10.1007/s41605-022-00327-3

    Article  Google Scholar 

  22. S. Thomas, T. Fusco, A. Tokovinin, M. Nicolle, V. Michau, G. Rousset, Comparison of centroid computation algorithms in a Shack–Hartmann sensor. Mon Notices R Astron Soc 371, 323 (2006). https://doi.org/10.1111/j.1365-2966.2006.10661.x

    Article  ADS  Google Scholar 

  23. H. Chang, W.Q. Ge, H.C. Wang, H. Yuan, Z.W. Fan, Laser beam pointing stabilization control through disturbance classification. Sensors 21, 1946 (2021). https://doi.org/10.3390/s21061946

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the funding from National Development and Reform Commission in China (Q110522S07001). It is also supported by NSFC (12105233) and by National Key R&D program of China (2018YFA0404201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Wang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xie, L., Sun, Q. et al. The broadband laser source and an active beam stabilization device for laser calibration systems. Radiat Detect Technol Methods 7, 364–371 (2023). https://doi.org/10.1007/s41605-023-00393-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-023-00393-1

Keywords

Navigation