Skip to main content

Advertisement

Log in

Radio-frequency system of the high energy photon source

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Purpose

High energy photon source is a 6 GeV diffraction-limited storage ring light source currently under construction in Beijing. A low-frequency fundamental radio-frequency (rf) system of 166.6 MHz was proposed to accommodate the accelerator physics design. Superconducting rf (srf) technologies were chosen for the storage ring rf accompanied by solid-state power amplifiers and digital low-level rf controls. The design of the rf system was completed, and the parameters are frozen. Elucidation of the rf design with key parameters is desired.

Methods

The requirements from the accelerator physics design will be presented followed by the detailed rf design. The logic behind the choice of key rf parameters is elaborated. The configuration of the entire rf system is presented.

Results and conclusions

The fundamental srf cavity of 166.6 MHz was designed to accelerate the ultrarelativistic electron beam. Heavy damping of higher-order modes in these cavities is required to avoid the coupled bunch instabilities. An active third harmonic srf of 499.8 MHz was adopted to realize the required rf gymnastics. Normal-conducting 5-cell cavities will be used for the booster rf. Solid-state amplifiers of 2.4 MW in total will be installed at HEPS to drive these cavities in the booster and the storage ring. A digital low-level rf system will be used to regulate rf field inside each cavity with high stabilities. The rf configuration during the commissioning and the operation scenarios are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Y. Jiao, G. Xu, X.H. Cui, Z. Duan, Y.Y. Guo, P. He, D.H. Ji, J.Y. Li, X.Y. Li, C. Meng, Y.M. Peng, S.K. Tian, J.Q. Wang, N. Wang, Y.Y. Wei, H.S. Xu, F. Yan, C.H. Yu, Y.L. Zhao, Q. Qin, The HEPS project. J. Synchrotron Radiat. 25(6), 1611–1618 (2018). https://doi.org/10.1107/S1600577518012110

    Article  Google Scholar 

  2. Y. Jiao, Y. Bai, X. Cui, C. Du, Z. Duan, Y. Guo, P. He, X. Huang, D. Ji, H. Ji, S. Jiang, B. Li, C. Li, J. Li, N. Li, X. Li, P. Liang, X. Lu, C. Meng, W. Pan, Y. Peng, Q. Qin, H. Qu, S. Tian, J. Wan, B. Wang, J. Wang, N. Wang, Y. Wei, G. Xu, H. Xu, F. Yan, C. Yu, Y. Zhao, Progress of lattice design and physics studies on the high energy photon source, in Proceedings of IPAC’21, no. 12 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2021), pp. 229–232 https://doi.org/10.18429/JACoW-IPAC2021-MOPAB053. https://jacow.org/ipac2021/papers/mopab053.pdf

  3. G. Xu, J. Chen, Z. Duan, J. Qiu, On-axis beam accumulation enabled by phase adjustment of a double-frequency RF system for diffraction-limited storage rings, in Proceedings of International Particle Accelerator Conference (IPAC’16), Busan, Korea, May 8-13, 2016, no. 7 in International Particle Accelerator Conference, (JACoW, Geneva, Switzerland, 2016), pp. 2032–2035. https://doi.org/10.18429/JACoW-IPAC2016-WEOAA02. http://jacow.org/ipac2016/papers/weoaa02.pdf

  4. Z. Duan, et al., Top-up injection schemes for HEPS, in Proceedings of ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular\(e^+\)e\(^- Colliders\)(eeFACT’16), Daresbury, UK, October 24-27, 2016, no. 58 in ICFA Advanced Beam Dynamics Workshop on High Luminosity Circular\(e^+\)e\(^- Colliders\), (JACoW, Geneva, Switzerland, 2017), pp. 85–89. https://doi.org/10.18429/JACoW-eeFACT2016-TUT2H4. http://jacow.org/eefact2016/papers/tut2h4.pdf

  5. J. Chen, H. Shi, L. Wang, Z. Duan, N. Wang, L. Huo, G. Wang, X. Shi, P. Liu, Strip-line kicker and fast pulser R &D for the HEPS on-axis injection system. Nucl. Instrum. Methods Phys. Res. Sect. A 920, 1–6 (2019). https://doi.org/10.1016/j.nima.2018.12.009

    Article  ADS  Google Scholar 

  6. L. Wang, J. Chen, H. Shi, G. Wang, N. Wang, Z. Duan, S. Tian, L. Huo, P. Liu, A novel 5-cell strip-line kicker prototype for the HEPS on-axis injection system. Nucl. Instrum. Methods Phys. Res. Sect. A 992, 165040 (2021). https://doi.org/10.1016/j.nima.2021.165040

    Article  Google Scholar 

  7. Z. Duan, et al., The swap-out injection scheme for the high energy photon source, in Proceedings, 9th International Particle Accelerator Conference (IPAC’18), Vancouver, BC, Canada, April 29-May 4, 2018, no. 9 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2018), pp. 4178–4181. https://doi.org/10.18429/JACoW-IPAC2018-THPMF052. http://jacow.org/ipac2018/papers/thpmf052.pdf

  8. P. Zhang, X. Zhang, Z. Li, J. Dai, L. Guo, H. Lin, Q. Ma, T. Huang, Z. Mi, Q. Wang, F. Meng, Development and vertical tests of a 166.6 MHz proof-of-principle superconducting quarter-wave beta = 1 cavity. Rev. Sci. Instrum. 90(8), 084705 (2019). https://doi.org/10.1063/1.5119093

    Article  ADS  Google Scholar 

  9. Y. Peng, Z. Duan, Y. Jiao, C. Meng, Study of beam transmission efficiency in injection and ramping process of the HEPS booster, in Proceedings of IPAC’21, no. 12 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2021), pp. 225–228. https://doi.org/10.18429/JACoW-IPAC2021-MOPAB052. https://jacow.org/ipac2021/papers/mopab052.pdf

  10. M. Peiniger, M. Pekeler, C. Piel, P. vom Stein, H. Vogel, RF activities on cavities and turn key accelerator systems at ACCEL, in Proceedings of the 2001 Particle Accelerator Conference, (Chicago, Illinois U.S.A., 2001), pp. 984–986. https://accelconf.web.cern.ch/p01/PAPERS/MPPH092.PDF

  11. L. Praestegaard, H. Bach, L. Kruse, B. Nielsen, F. Perez, L. Dallin, R. Silzer, S. Moeller, The booster for the Canadian light source, in Proceedings of the 2001 Particle Accelerator Conference, (Chicago, USA, 2001), pp. 3951–3953. https://accelconf.web.cern.ch/p01/PAPERS/FPAH117.PDF

  12. C. Christou, V. Kempson, K. Dunkel, A. Fabris, The diamond light source booster RF system, in Proceedings of EPAC 2006, Edinburgh, Scotland, Jun 26–30, 2006, European Physical Society Accelerator Group (EPS-AG), (2006), pp. 1295–1297. https://accelconf.web.cern.ch/e06/PAPERS/TUPCH120.PDF

  13. M. Pont, E. Al-Dmour, G. Benedetti, D. Einfeld, A. Falone, M. de Lima Lopes, U. Iriso, M.Munoz, F. Perez, W. Joho, Injector design for ALBA, in Proceedings of EPAC 2006, (Edinburgh, Scotland, 2006), pp. 3413–3415. https://accelconf.web.cern.ch/e06/PAPERS/THPLS057.PDF

  14. K. Dunkel, B. A. Aminov, J. Hottenbacher, C. Piel, The SSRF booster cavity system, in Proceedings of PAC07, (Albuquerque, New Mexico, USA, 2007), pp. 2053–2055. https://epaper.kek.jp/p07/PAPERS/WEPMN005.PDF

  15. C. Wang, L.-H. Chang, M. Chang, C.-T. Chen, L. Chen, F.-T. Chung, F. Z. Hsiao, M.-C. Lin, Y.-H. Lin, C. Lo, G.-H. Luo, M. Tsai, T.-T. Yang, M.-S. Yeh, T.-C. Yu, M. Lee, Design features and construction progress of 500-MHz Rf Systems for the Taiwan Photon Source, in Proceedings of 2011 Particle Accelerator Conference, (New York, NY, USA, 2011), pp. 2513–2515. https://accelconf.web.cern.ch/PAC2011/papers/thp211.pdf

  16. Y. Luo, T. Huang, J. Li, H. Lin, Q. Ma, Q. Wang, P. Zhang, F. Zhao, Development of a 500-MHz 150-kW solid-state power amplifier for high energy photon source, in Proceedings of IPAC’21, no. 12 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland 2021), pp. 2312–2314. https://doi.org/10.18429/JACoW-IPAC2021-TUPAB346. https://jacow.org/ipac2021/papers/tupab346.pdf

  17. X. Zhang, P. Zhang, Z. Li, J. Dai, X. Hao, Q. Ma, T. Huang, H. Lin, Z. Mi, Q. Wang, F. Meng, The mechanical design, fabrication and tests of a 166.6 MHz quarter-wave beta=1 proof-of-principle superconducting cavity for HEPS. Nucl. Instrum. Methods Phys. Res. Sect. A 947, 162770 (2019). https://doi.org/10.1016/j.nima.2019.162770

    Article  Google Scholar 

  18. X. Zhang, P. Zhang, Z. Li, Q. Wang, H. Lin, Z. Mi, Q. Ma, W. Pan, J. Dai, T. Huang, R. Han, R. Ge, L. Sun, F. Meng, D. Li, Design and mechanical performance of a dressed 166.6 MHz \(\beta \)=1 Proof-of-principle superconducting cavity in horizontal test. IEEE Trans. Appl. Supercond. 30(8), 1–8 (2020). https://doi.org/10.1109/TASC.2020.2999541

    Article  Google Scholar 

  19. T. Huang, P. Zhang, Z. Chang, Q. Ma, X. Zhang, Z. Li, R. Han, Q. Wang, H. Lin, J. Zhou, R. Ge, W. Pan, High-power tests and solution to overheating at cavity-coupler interface of the 166.6-MHz beta = 1 superconducting quarter-wave resonator for HEPS. AIP Adv. 11(4), 045024 (2021). https://doi.org/10.1063/5.0046377

    Article  ADS  Google Scholar 

  20. L. Guo, P. Zhang, X. Zhang, H. Zheng, F. Meng, Z. Li, Multipacting suppression of the HOM-damped 166.6-MHz \(\beta \)=1 quarter-wave superconducting cavities at HEPS. J. Instrum. 16(11), 11003 (2021). https://doi.org/10.1088/1748-0221/16/11/p11003

    Article  Google Scholar 

  21. X. Zhang, J. Dai, L. Guo, T. Huang, Z. Li, Q. Ma, F. Meng, Z. Mi, P. Zhang, H. Zheng, Design of a HOM-Damped 166.6 MHz Compact quarter-wave \(\beta \)=1 superconducting cavity for high energy photon source, in Proceedings of SRF2021, no. 20 in International Conference on RF Superconductivity, (JACoW Publishing, Geneva, Switzerland 2021), pp. 0000–0005. https://doi.org/10.18429/JACoW-IPAC2021-MOPAB380

  22. T. Huang, P. Zhang, Z. Li, X. Zhang, H. Lin, Q. Ma, F. Meng, W. Pan, Development of a low-loss magnetic-coupling pickup for 1666-MHz quarter-wave beta = 1 superconducting cavities. Nucl. Sci. Tech. 31(9), 87 (2020). https://doi.org/10.1007/s41365-020-00795-6

    Article  Google Scholar 

  23. H. Zheng, Z. Li, F. Meng, N. Wang, H. Xu, P. Zhang, X. Zhang, Higher order mode damping for 166 MHz and 500 MHz superconducting RF cavities at high energy photon source, in Proceedings of IPAC’21, no. 12 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2021), pp. 2798–2801. https://doi.org/10.18429/JACoW-IPAC2021-WEPAB090

  24. J. Dai, Z. Li, P. Zhang, Post Processing of a 166.6 MHz HEPS-TF Cavity at Institute of High Energy Physics, in Proceedings of of International Conference on RF Superconductivity (SRF’17), Lanzhou, China, July 17-21, 2017, no. 18 in International Conference on RF Superconductivity, (JACoW, Geneva, Switzerland, 2018), pp. 583–585. https://doi.org/10.18429/JACoW-SRF2017-TUPB083

  25. T. Huang, P. Zhang, Q. Ma, H. Lin, Q. Wang, W. Pan, F. Bing, K. Gu, L. Guo, Development of fundamental power couplers for 166.6 MHz superconducting quarter-wave beta = 1 proof-of-principle cavities. Rev. Sci. Instrum. 91(6), 063301 (2020). https://doi.org/10.1063/5.0001540

    Article  ADS  Google Scholar 

  26. Z. Mi, Z. Li, H. Lin, W. Pan, Q. Wang, P. Zhang, X. Zhang, H. Zheng, Tuner Design and Test for 166.6 MHz SRF Cavity of HEPS, in: Proceedings SRF’19, no. 19 in International Conference on RF Superconductivity, (JACoW Publishing, Geneva, Switzerland, 2019), pp. 642–645. https://doi.org/10.18429/JACoW-SRF2019-TUP080. http://jacow.org/srf2019/papers/tup080.pdf

  27. X. Zhang, Z. Li, Q. Ma, P. Zhang, Synchrotron Light Shielding for the 166 MHz Superconducting RF Section at High Energy Photon Source, in: Proceedings of IPAC’21, no. 12 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2021), pp. 1169–1172. https://doi.org/10.18429/JACoW-IPAC2021-MOPAB382. https://jacow.org/ipac2021/papers/mopab382.pdf

  28. K. Akai, N. Akasaka, K. Ebihara, E. Ezura, T. Furuya, K. Hara, K. Hosoyama, S. Isagawa, A. Kabe, T. Kageyama, Y. Kojima, S. Mitsunobu, H. Mizuno, Y. Morita, H. Nakai, H. Nakanishi, M. Ono, H. Sakai, M. Suetake, T. Tajima, Y. Takeuchi, Y. Yamazaki, S. Yoshimoto, RF systems for the KEK B-Factory. Nucl. Instrum. Methods Phys. Res. Sect. A 499(1), 45–65 (2003). https://doi.org/10.1016/S0168-9002(02)01773-4

    Article  ADS  Google Scholar 

  29. T. Huang, W. Pan, G. Wang, Y. Liu, Y. Sun, Z. Li, Q. Ma, H. Lin, Z. Mi, F. Meng, J. Dai, P. Sha, G. Zhao, The development of the 499.8 MHz superconducting cavity system for BEPCII. Nucl. Instrum. Methods Phys. Res. Sect. A 1013, 165649 (2021). https://doi.org/10.1016/j.nima.2021.165649

    Article  Google Scholar 

  30. H. Zheng, P. Zhang, Z. Li, Q. Ma, Z. Mi, X. Zhang, T. Huang, R. Han, C. Ma, R. Ge, W. Pan, Design optimization of a mechanically improved 4998-MHz single-cell superconducting cavity for HEPS. IEEE Trans. Appl. Supercond. 31(2), 1–9 (2021). https://doi.org/10.1109/TASC.2020.3045746

    Article  Google Scholar 

  31. C. Wang, L.-H. Chang, M. Chang, L. Chen, F.-T. Chung, M.-C. Lin, Y.-H. Lin, Z. Liu, C. Lo, M. Tsai, T.-T. Yang, M.-S. Yeh, T.-C. Yu, T. Furuya, K. Hara, T. Honma, A. Kabe, Y. Kojima, S. Mitsunobu, Y. Morita, H. Nakai, K. Nakanishi, M. Nishiwaki, S. Takano, F. Inoue, K. Sennyu, T. Yanagisawa, Production of 500 MHz SRF Modules the KEKB-type for Taiwan Photon Source, in Proceedings of SRF2013, Paris, France, no. 16 in International Conference on RF Superconductivity, (JACoW Publishing, Geneva, Switzerland, 2014), pp. 263–265. https://accelconf.web.cern.ch/SRF2013/papers/mop062.pdf

  32. A. Hofmann, S. Myers, Beam dynamics in a double RF system. https://cds.cern.ch/record/879237

  33. Y. Luo, P. Zhang, H. Lin, Q. Wang, Q. Ma, W. Pan, Design and performance tests of a modular 166.6-MHz 50-kW compact solid-state power amplifier for the HEPS-TF project. J. Instrum. 16(04), P04011 (2021). https://doi.org/10.1088/1748-0221/16/04/p04011

    Article  Google Scholar 

  34. Y. Luo, T. Huang, J. Li, H. Lin, Q. Ma, Q. Wang, P. Zhang, F. Zhao, Development of a 166-MHz 260-kW solid-state power amplifier for high energy photon source, in Proceedings of IPAC’21, no. 12 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2021), pp. 2315–2317. https://doi.org/10.18429/JACoW-IPAC2021-TUPAB347. https://jacow.org/ipac2021/papers/tupab347.pdf

  35. Q. Wang, J. Dai, T. Huang, D. Li, H. Lin, Z. Mi, P. Zhang, Development of a 166.6 MHz digital LLRF system for HEPS-TF project, in Proceedings of SRF’19, no. 19 in International Conference on RF Superconductivity, (JACoW Publishing, Geneva, Switzerland, 2019), pp. 1073–1077, https://doi.org/10.18429/JACoW-SRF2019-THP075. http://jacow.org/srf2019/papers/thp075.pdf

  36. D. Li, P. Zhang, Q. Wang, H. Lin, Development of a high-performance RF front end for HEPS 166.6 MHz low-level RF system. Radiat. Detect. Technol. Methods 4, 84–91 (2020). https://doi.org/10.1007/s41605-019-00156-x

    Article  Google Scholar 

  37. D. Li, H. Lin, Q. Wang, P. Zhang, Development of a 166.6 MHz low-level RF system by direct sampling for high energy photon source, in Proceedings of IPAC’21, no. 12 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2021), pp. 1189–1191, https://doi.org/10.18429/JACoW-IPAC2021-MOPAB390

  38. D. Li, Q. Wang, P. Zhang, Z. Mi, X. Zhang, H. Lin, Active microphonics noise suppression based on DOB control in 1666-MHz superconducting cavities for HEPS. Radiat. Detect. Technol. Methods 5, 153–160 (2021). https://doi.org/10.1007/s41605-020-00231-8

    Article  Google Scholar 

  39. Z. Deng, J. Dai, H. Lin, Q. Wang, P. Zhang, Development of a new interlock and data acquisition for the RF system at high energy photon source, in Proceedings IPAC’21, no. 12 in International Particle Accelerator Conference, (JACoW Publishing, Geneva, Switzerland, 2021), pp. 3630–3632. https://doi.org/10.18429/JACoW-IPAC2021-WEPAB394. https://jacow.org/ipac2021/papers/wepab394.pdf

  40. Z. Deng, Q. Wang, H. Lin, P. Zhang, J. Dai, New rf trip diagnostic system of BEPCII. Radiat. Detect. Technol. Methods 5, 594–599 (2021). https://doi.org/10.1007/s41605-021-00285-2

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by High Energy Photon Source (HEPS), a major national science and technology infrastructure in China. Funding was also received from the Chinese Academy of Sciences and the National Natural Science Foundation of China (Grant No. 12275285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Dai, J., Deng, Z. et al. Radio-frequency system of the high energy photon source. Radiat Detect Technol Methods 7, 159–170 (2023). https://doi.org/10.1007/s41605-022-00366-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-022-00366-w

Keywords

Navigation