Skip to main content
Log in

Optical design and optimization study of metrology sector at high energy photon source

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Introduction

X-ray metrology, including the metrological calibration of X-ray detectors, optical elements and sources, is important for many frontier science, such as X-ray astronomy, EUV-lithography, plasma physics. Among many types of X-ray sources, synchrotron-radiation is considered perfect for X-ray metrology, mainly due to that arbitrarily X-rays specifications can be tailored to meet the demands of metrological calibration of X-ray detectors and optical elements. As a consequence, many metrology beamlines around the world are built, upgrading or to be constructed, including the metrology sector to be constructed at High Energy Photon Source (HEPS).

Method

One reasonable way to access good metrological data is using a stable X-ray beam, which means that beam position as well as flux should be as constant as possible and the beamline configuration should be simple and robust to reduce the uncertainty from beamline itself. In addition, the spectral purity of monochromatic X-rays is another crucial factor for X-ray metrology, which means stray X-rays and harmonic X-rays must be as low as possible. Many measures are taken to satisfy these requirements.

Conclusion

An optical design of the metrology sector optimized for synchrotron-radiation-based- metrology is described here. The metrology sector, ranging from 50 eV to 20 keV, will be set up to meet the growing needs of X-ray metrology in China. All beamlines’ configurations are simple and easy to use, with an acceptable ratio of high-order harmonics and stray X-rays, which can be under 1% in the entire energy range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Idir, P. Mercere, T. Moreno, A. Delmotte, Synchrotron. Radiat. News. 19, 18 (2006)

    Article  Google Scholar 

  2. G. Brandt, J. Eden, R. Fliegauf, A. Gottwald, G. Wüstefeld, A. Hoehl, Nucl. Instrum. Methods Phys. Res. 258, 445 (2007)

    Article  ADS  Google Scholar 

  3. B. Wende, Metrologia 32, 419 (1996)

    Article  ADS  Google Scholar 

  4. E. Ziegler, J. Hoszowska, T. Bigault, L. Peverini, J.Y. Massonnat, R. Hustache, AIP Conf. Proc. 705, 436 (2004)

    Article  ADS  Google Scholar 

  5. Y. Kitajima, Y. Yonamoto, K. Amemiya, H. Tsukabayashi, T. Ohta, K. Ito, J. Electron. Spectrosc. 101–103, 927 (1999)

    Article  Google Scholar 

  6. J.H. Underwood, E.M. Gullikson, M. Koike, P.J. Batson, Proc Spie 3113, 214 (1997)

    Article  Google Scholar 

  7. K. Kaznatcheev, O. Chubar, J.W. Keister, M. Idir, J. Phys. Conf. 425, 162009 (2013)

    Article  Google Scholar 

  8. K.J.S. Sawhney, I.P. Dolbnya, M.K. Tiwari, L. Alianelli, S.M. Scott, G.M. Preece et al., AIP Conf. Proc. 1234, 387 (2010)

    Article  ADS  Google Scholar 

  9. V. S. K. Gluskin, O.A. Makarov, V.I. Ogurtsov, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 246, 397(1986)

  10. R. Reininger, J.C. Woicik, S.L. Hulbert, D.A. Fischer, Nucl. Instrum. Methods Phys. Res., Sect. A 649, 49 (2011)

    Article  ADS  Google Scholar 

  11. G. Ulm, G. Brandt, R. Fliegauf, A. Hoehl, R. Klein, R. Müller et al., Nucl. Instrum. Methods Phys. Res. A 582, 26 (2007)

    Article  ADS  Google Scholar 

  12. B. Beckhoff, A. Gottwald, R. Klein, M. Krumrey, Physica Status Solidi 246, 1415 (2009)

    Article  ADS  Google Scholar 

  13. G. Ulm, B. Beckhoff, R. Klein, M. Krumrey, H. Rabus, R. Thornagel, SPIE's International Symposium on Optical Science, Engineering, and Instrumentation, 3444, 20 (1998)

  14. C. Mingqi, Z. Yidong, Z. Lei, Z. Jia, Y. Jiamin, Chin. J. Laser. 37, 2271 (2010)

    Article  Google Scholar 

  15. Y. Jiao, G. Xu, X.-H. Cui, Z. Duan, Y.-Y. Guo, P. He et al., J. Synchrotron Rad. 25, 1611 (2018)

    Article  Google Scholar 

  16. S. Kexu, Acta. Opt. Sinica. 22, 379 (2002)

    Google Scholar 

  17. C. Xue, L. Xue, Y. Wu, Y. Wang, S. Yang, R. Tai, J. Synchrotron Rad. 26, 1192 (2019)

    Article  Google Scholar 

  18. K. Tang, L. Zheng, Y.D. Zhao, S.H. Liu, Y.H. Dong, J. Synchrotron Rad. 26, 1835 (2019)

    Article  Google Scholar 

  19. N. Canestrari, D. Karkoulis, M.S.D. Río, Proc. SPIE Int. Soc. Opt. Eng. 8141, 371 (2011)

    Google Scholar 

  20. A. Sokolov, M.G. Sertsu, A. Gaupp, M. Lüttecke, F. Schäfers, J. Synchrotron Rad. 25, 100 (2018)

    Article  Google Scholar 

  21. L. Zheng, Y. Zhao, M. Cui, J. Zhu, Y. Han, K. Zhou et al., Nucl. Tech. 30, 3 (2007)

    Google Scholar 

Download references

Acknowledgements

This work was supported by High Energy Photon Source (HEPS), a major national science and technology infrastructure in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidong Zhao.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Zhao, Y., Zheng, L. et al. Optical design and optimization study of metrology sector at high energy photon source. Radiat Detect Technol Methods 5, 174–180 (2021). https://doi.org/10.1007/s41605-021-00241-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41605-021-00241-0

Keywords

Navigation