Skip to main content
Log in

Study of the germanium dead layer influence on HP(Ge) detector efficiency by Monte Carlo simulation

  • Original Paper
  • Published:
Radiation Detection Technology and Methods Aims and scope Submit manuscript

Abstract

Introduction

The dead layer thickness provided by the manufacturer increases with the aging of the HPGe detector; the increase of dead layer thickness leads to the decrease in the detector’s efficiency, not only due to gamma rays attenuation in the dead layer but also due to the reduction of the active volume of the detector.

Purpose

In this work, the dead layer influence on HPGe detector efficiency was studied by Monte Carlo simulation.

Materials and methods

The detector model was developed using Monte Carlo N Particle (MCNP5) code for adjustment of the dead layer thickness; the adjustment was performed according to a specific irradiation configuration by collimation approach using three reference point sources: 241Am (59.5 keV), 137Cs (661.6 keV) and 60Co (1173.2 keV; 1332.5 keV).

Result

The calculated efficiencies were compared to the measured intrinsic efficiency ones for these point sources; a good agreement between Monte Carlo and measurements results was found after the experimental validation.

Conclusion

The results confirm the variation in the dead layer thickness according to aging of the detector; the average change of dead layer is in order of 1.30 ± 0.05 mm after 9 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Azbouche, M. Belgaid, H. Mazrou, Monte Carlo calculations of the HPGe detector efficiency for radioactivity measurement of large volume environmental samples. J. Environ. Radioact. V146, 119–124 (2015)

    Article  Google Scholar 

  2. E. Chham, F.P. García, T. El Bardouni, M.A. Ferro-García, M. Azahra, K. Benaalilou, M. Krikiz, H. Elyaakoubi, J. El Bakkali, M. Kaddour, Monte Carlo analysis of the influence of germanium dead layer thickness on the HPGe gamma detector experimental efficiency measured by use of extended sources. Appl. Radiat. Isot. 95, 30–35 (2015)

    Article  Google Scholar 

  3. F. Bochud, C.J. Bailat, T. Buchillier, F. Byrde, E. Schmid, J.P. Laedermann, Simple Monte-Carlo method to calibrate well-type HPGe detectors. Nucl Instrum Methods Phys Res A 569, 790–795 (2006)

    Article  ADS  Google Scholar 

  4. J. Boson, G. Agren, L. Johansson, A detailed investigation of HPGe detector response for improved Monte Carlo efficiency calculations. Nucl Instrum Methods Phys Res A 587, 304–314 (2008)

    Article  ADS  Google Scholar 

  5. E. Andreotti, M. Hult, G. Marissens, G. Lutter, A. Garfagnini, S. Hemmer, K. Von Sturm, Determination of dead-layer variation in HPGe detectors. Appl. Radiat. Isot. 87, 331–335 (2014)

    Article  Google Scholar 

  6. D. Budjáš, M. Heisel, W. Maneschg, H. Simgen, Optimisation of the MC-model of a p-type Ge-spectrometer for the purpose of efficiency determination. Appl. Radiat. Isot. V67(I5), 706–710 (2009)

    Article  Google Scholar 

  7. E. Chham, F. Piñero García, T. El Bardouni, M. Angeles Ferro-García, M. Azahra, Monte Carlo analysis of the influence of germanium dead layer thickness on HPGe gamma detector experimental efficiency measured by use of extended sources. Appl. Radiat. Isot. 95, 30–35 (2015)

    Article  Google Scholar 

  8. T. Ersmark et al., Status of the DESIRE Project: GEANT4 physics validation studies and first results from Columbus/ISS radiation simulations. IEEE Trans. Nucl. Sci. 51(4), 1378–1384 (2004)

    Article  ADS  Google Scholar 

  9. F. Salvat, J.M. Fernández-Varea, J. Sempau, PENELOPE-2011: A Code System for Monte Carlo Simulation of Electron and Photon Transport OECD NEA Data Bank/NSC DOC(2011)/5 (OECD Nuclear Energy Agency, Issy-les-Moulineaux, 2011)

    Google Scholar 

  10. X-5 Monte Carlo Team, in Overview and Theory. MCNP a General Monte Carlo N Particle Transport Code, Version 5 (Los Alamos National Laboratory LA-UR 03-1987, 2003).

  11. J. Ródenas, A. Pascual, I. Zarza, V. Serradell, J. Ortiz, L. Ballesteros, Analysis of the influence of germanium dead layer on detector calibration simulation for environmental radioactive samples using the Monte Carlo method. Nucl. Instrum. Methods Phys. Res. Sect. A V496(I2–3), 390–399 (2003)

    Article  ADS  Google Scholar 

  12. A. Elanique, O. Marzocchi, D. Leone, L. Hegenbart, B. Breustedt, L. Oufni, Dead layer thickness characterization of an HPGe detector by measurements and Monte Carlo simulations. Appl. Radiat. Isot. 70, 538–542 (2012)

    Article  Google Scholar 

  13. S. Kamboj, B. Kahna, Use of Monte Carlo simulation to examine gamma-ray interactions in germanium detectors. Radiat. Meas. 37, 1–8 (2003)

    Article  Google Scholar 

  14. M.C. Lépy, T. Altzitzoglou, D. Arnold, F. Bronson, R. Capot Noye, M. Décombaz, F. De Corte, R. Edelmaier, E. Herrera Peraza, S. Klemola, M. Korun, M. Kralik, H. Neder, J. Plagnard, S. Pommè, J. De Sanoit, O. Sima, F. Ugletveit, L. Van Velzen, T. Vidma, Inter comparison of efficiency transfer software for gamma-ray spectrometry. Appl. Radiat. Isot. 55, 493–503 (2001)

    Article  Google Scholar 

  15. M.J. Vargas, A.F. Timón, N.C. Dı́az, D.P. Sánchez, Monte Carlo simulation of the self-absorption corrections for natural samples in gamma-ray spectrometry. Appl. Radiat. Isot. V5(I6), 893–898 (2002)

    Article  Google Scholar 

  16. J.C. Hardy, V.E. Iacob, M. Sanchez-Vega, R.T. Effinger, P. Lipnik, V.E. Mayes, D.K. Willis, R.G. Helmer, precise efficiency calibration of an HPGe detector: source measurements and Monte Carlo calculations with sub-percent precision. Appl. Radiat. Isot. 56, 65–69 (2002)

    Article  Google Scholar 

  17. F. Courtine, T. Pilleyre, S. Sanzelle, D. Miallier, Ge well detector calibration by means of a trial and error procedure using the dead layers as a unique parameter in a Monte Carlo simulation. Nucl. Instrum. Methods Phys. Res. A 596, 229–234 (2008)

    Article  ADS  Google Scholar 

  18. Canberra Industries, in Solid-State Photon Detector, Operators Manual, GMX Series, HPGe (High-Purity Germanium)

  19. Canberra Industries, in Detector Lead Shields, Model 747 and 747E, C40114 – 04/13. www.canberra.com

  20. G.F. Knoll, Radiation Detection and Measurement, 3rd edn. (Wiley, New York, 2000)

    Google Scholar 

  21. P. Dryak, P. Kovar, Experimental and MC determination of HPGe detector efficiency in the 40–2754 keV energy range for measuring point source geometry with the source-to-detector distance of 25 cm. Appl. Radiat. Isot. 64, 1346–1349 (2006)

    Article  Google Scholar 

  22. T. Nakamura, T. Suzuki, Monte Carlo calculation of peak efficiencies of Ge(Li) and pure Ge detectors to voluminal sources and comparison with environmental radioactivity measurement. Nucl. Instrum. Methods Phys. Res. V205(I1–2), 211–218 (1983)

    Article  ADS  Google Scholar 

  23. N.Q. Huy, The influence of dead layer thickness increase on efficiency decrease for a coaxial HPGe p-type detector. Nucl. Instrum. Methods Phys. Res. A 621, 390–394 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Azbouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azbouche, A., Belamri, M. & Tchakoua, T. Study of the germanium dead layer influence on HP(Ge) detector efficiency by Monte Carlo simulation. Radiat Detect Technol Methods 2, 45 (2018). https://doi.org/10.1007/s41605-018-0074-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41605-018-0074-y

Keywords

Navigation