Skip to main content

Advertisement

Log in

Upper Cenomanian and lower Turonian (Cretaceous) corals from the Tethyan West Portuguese Carbonate Platform

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

Scleractinian corals of late Cenomanian to early Turonian age from the western border of the Iberian Peninsula are described for the first time. They derive from middle to inner shelf limestones of the mid Albian-Turonian West Portuguese Carbonate Platform, near the localities of Figueira da Foz, Leiria, and Nazaré, where a succession of fossil-rich beds with cephalopods, rudists, and other invertebrates allows an accurate biostratigraphic control from the basal upper Cenomanian to the upper lower Turonian. During this interval, facies are deeper and carbonate-rich, that are more favourable to the occurrence of hermatypic corals and which are absent in previous sequences of the platform. The studied corals belong to the superfamilies Actinastreoidea, Cladocoroidea, Cyclolitoidea, Madreporoidea, Phyllosmilioidea, and Poritoidea. With a total of 11 species, the number of taxa is comparatively low when compared with other Late Cretaceous faunas. The corals show relationships to Albian coral faunas from the SE Iberian Platform and the Quillan Basin (SW France), both of which are located in the Tethyan Realm. The faunal turnover in scleractinian corals at the Cenomanian/Turonian (C/T) boundary is discussed. Scleractinian corals were rich in genera during the Cenomanian and reach about 110 co-existing genera at the base of the late Cenomanian. This number was reduced by 46 genera that became extinct at the Cenomanian/Turonian boundary, but were replaced rapidly after the boundary by 59 genera, of which six became extinct before the Coniacian. Sixty-six genera survived the C/T boundary, of which 11 became extinct before the middle Coniacian. This means that the Cenomanian richness in genera was almost restored in the Coniacian.

Resumen

Se describen por primera vez los corales escleractinidos del periodo Cenomaniense superior - inicio del Turoniense del margen occidental de la península Ibérica. Los ejemplares fueron obtenidos en secciones de la plataforma carbonática media e interna de edad Albiense-Turoniense del oeste de Portugal, próximas a las localidades de Figueira da Foz, Leiria, y Nazaré. Este registro también contiene una sucesión de capas ricas en otros fósiles como cefalópodos, rudistas y otros invertebrados que permiten un control preciso sobre la bioestratigrafía desde el Cenomaniense superior hasta el Turoniense superior. Durante este intervalo de tiempo, las facies son más profundas y ricas en carbonatos, siendo más favorable a la aparición de corales hermatípicos que estaban ausentes en el registro anterior de la plataforma. Los corales estudiados pertenecen a las superfamilias Actinastreoidea, Cladocoroidea, Cyclolitoidea, Madreporoidea, Phyllosmilioidea y Poritoidea. Aunque muestran un total de 11 especies, la cantidad de taxones es comparablemente baja en comparación con otras faunas del Cretácico Superior. Los corales muestran relaciones con otros corales del Albiense del margen sureste de la plataforma Ibérica, y con la cuenca de Quillan (SO de Francia), ambas zonas localizadas en el mar de la Tethys. Se discute el cambio de las faunas de escleractinidos en el límite Cenomaniense/Turoniense (C/T). durante el Cenomaniense orden Scleractinia era rico en géneros en la zona estudiada, llegando a alcanzar aproximadamente 100 géneros en la base del Cenomaniense superior. Esta cantidad se reduce hasta 46 géneros en el límite Cenomaniense/Turoniense, pero se recuperó nuevamente después de dicho límite hasta alcanzar los 59 géneros, de los cuales 6 se extinguieron durante el Turoniense. Sesenta y seis géneros sobrevivieron el límite C/T, de cuales 11 géneros se extinguieron antes del Coniaciense medio. Eso indica que la riqueza de génerosque había en el Cenomaniense fue casi restaurada en el Coniaciense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Alloiteau, J. (1952). Embranchement des coelentérés. In J. Piveteau (Ed.), Traité de Paléontologie (pp. 376–684). Masson.

    Google Scholar 

  • Alloiteau, J. (1957). Contribution à la systématique des Madréporaires fossiles. Centre National de la Recherche Scientifique.

    Google Scholar 

  • Alloiteau, J. (1958). Monographie des Madréporaires fossiles de Madagascar. Annales Géologiques de Madagascar, 25, 1–218.

    Google Scholar 

  • Azerêdo, A. C., Duarte, L. V., Henriques, M. H., & Manuppella, G. (2003). Da dinâmica continental no Triásico aos mares do Jurássico Inferior e Médio. Lisboa: Instituto Geológico e Mineiro.

  • Baron-Szabo, R. C. (2021). Upper Barremian–lower Aptian scleractinian corals of central Europe (Schrattenkalk Fm., Helvetic Zone, Austria, Germany, Switzerland). Zootaxa, 4960(1), 1–199. https://doi.org/10.11646/zootaxa.4960.1.1

    Article  Google Scholar 

  • Baron-Szabo, R. C., & Steuber, T. (1996). Korallen und Rudisten aus dem Apt im tertiären Flysch des Parnass-Gebirges bei Delphi-Arachowa. Berliner Geowissenschaftliche Abhandlungen, 18, 3–75 (E).

    Google Scholar 

  • Barroso-Barcenilla, F., Callapez, P. M., Ferreira Soares, A., & Segura, M. (2011). Cephalopod assemblages and depositional sequences from the upper Cenomanian and lower Turonian of the Iberian Peninsula (Spain and Portugal). Journal of Iberian Geology, 37, 9–28. https://doi.org/10.5209/rev_JIGE.2011.v37.n1.1

    Article  Google Scholar 

  • Beauvais, L. (1982). Révision du genre Palaeohelia Alloiteau (Scleractiniaire méso-crétacé). Eclogae Geologicae Helvetiae, 75(3), 669–687.

    Google Scholar 

  • Becker, E. (1875). Die Korallen der Nattheimer Schichten (1). Palaeontographica, 21, 1–60.

    Google Scholar 

  • Berthou, P. Y. (1984). Albian-Turonian stage boundaries and subdivisions in the Western Portuguese Basin, with special emphasis on the Cenomanian-Turonian boundary in the Ammonite Facies and Rudist Facies. Bulletin of the Geological Society of Denmark, 33, 41–45.

    Article  Google Scholar 

  • Bonilla González, O. A., López-Horgue, M. A., Löser, H., & Fernández Mendiola, P. A. (2018). Un ejemplo clave en la evolución de los corales: los arrecifes del Aptiense-Albiense (Cretácico Inferior) de la Cuenca Vasco-Cantábrica. In A. Badiola, A. Gómez-Olivencia, & X. Pereda Suberiola (Eds.), Registro fósil y patrimonio de los Pirineos occidentales: una visión desde la Geodiversidad. (pp. 81–83). Vitoria Gasteiz: Servicio Central de Publicaciones del Gobierno Vasco.

  • Bover Arnal, T., Löser, H., Moreno Bedmar, J. A., Salas, R., & Strasser, A. (2012). Corals on the slope (Aptian, Maestrat Basin, Spain). Cretaceous Research, 37, 43–64.

    Article  Google Scholar 

  • Callapez, P. M. (1998). Estratigrafia e Paleobiologia do Cenomaniano-Turoniano. O significado do eixo da Nazaré-Leiria-Pombal. PhD Thesis. University of Coimbra.

  • Callapez, P. M. (2004). The Cenomanian-Turonian central West Portuguese carbonate platform. In J. L. Dinis & P. P. Cunha (Eds.), Cretaceous and Cenozoic events in West Iberia margins. 23rd IAS Meeting of Sedimentology, field trip 2 guidebook (pp. 39–51). International Association of Sedimentologists.

    Google Scholar 

  • Callapez, P. M. (2008). Palaeobiogeographic evolution and marine faunas of the Mid-Cretaceous Western Portuguese Carbonate Platform. Thalassas, 24, 29–52.

    Google Scholar 

  • Dana, J. D. (1846). Structure and classification of Zoophytes. United States Exploring Expedition during the years 1838, 1839, 1840, 1841, 1842 under the command of Charles Wilkes, U.S.N. Philadelphia: Lea & Blanchard.

  • Dinis, J. L., Rey, J., Cunha, P. P., Callapez, P. M., & Reis, R. P. (2008). Stratigraphy and allogenic controls on the western Portugal Cretaceous, an updated synthesis. Cretaceous Research, 29, 772–780. https://doi.org/10.1016/j.cretres.2008.05.027

    Article  Google Scholar 

  • Eliášová, H. (1989). Genres nouveaux des Scléractiniaires du Crétacé de la Bohême (Tchécoslovaquie). Casopis pro Mineralogii a Geologii, 34(2), 113–121.

    Google Scholar 

  • Eliášová, H. (1995). Famille nouvelle des Scléractiniaires du Crétacé Supérieur de Bohême (Cénomanien supérieur - Turonien inférieur, République Tchèque). Vestník Ceského Geologického Ústavu, 70(3), 27–34.

    Google Scholar 

  • Eliášová, H. (1997). Coraux crétacés de Bohême (Cénomanien supérieur; Turonien inférieur - Coniacien inférieur). République Tchèque. Vestník Ceského Geologického Ústavu, 72(3), 245–266.

    Google Scholar 

  • Felix, J. (1903a). Verkieselte Korallen als Geschiebe im Diluvium von Schlesien und Maehren. Zentralblatt für Mineralogie, Geologie und Paläontologie, for 1903, 561–577.

  • Felix, J. (1903b). Studien über die korallenführenden Schichten der oberen Kreideformation in den Alpen und den Mediterrangebieten (1) Die Anthozoën der Gosauschichten in den Ostalpen. Palaeontographica, 49, 163–360.

    Google Scholar 

  • Fernández Mendiola, P. A., Pérez-Malo, J., & García-Mondéjar, J. (2015). Stratigraphy and facies of the Early Aptian Robayera section (Cantabria, Northern Spain). Geogaceta, 55, 1–5.

    Google Scholar 

  • Forster, A., Schouten, S., Baas, M., & Sinninghe Damsté, J. S. (2007). Mid-Cretaceous (Albian–Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology, 350, 919–922.

    Article  Google Scholar 

  • Frech, F. (1890). Die Korallenfauna der Trias (1:) Die Korallen der Juvavischen Triasprovinz. Palaeontographica, 37, 1–116.

    Google Scholar 

  • Fromentel, E. (1861). Introduction à l’étude des polypiers fossiles. Mémoires de la Société d’émulation du Doubs, 5, 1–357.

    Google Scholar 

  • Garberoglio, R. M., Löser, H., & Lazo, D. G. (2020). Early Cretaceous corals from the Agrio Formation, Neuquén Basin, west-central Argentina: Family Actinastraeidae. Cretaceous Research, 114(104503), 1–18. https://doi.org/10.1016/j.cretres.2020.104503

    Article  Google Scholar 

  • Garberoglio, R. M., Löser, H., & Lazo, D. G. (2021). Lower Cretaceous corals from the Agrio Formation, Neuquén Basin, west-central Argentina: Family Columastraeidae. Cretaceous Research, 124(104817), 1–19. https://doi.org/10.1016/j.cretres.2021.104817

    Article  Google Scholar 

  • Gili, E., & Götz, S. (2018). Part N, Revised, Volume 1, Chapter 26B: Paleoecology of Rudists. Treatise Online, 103: 1–29.

  • Gill, G. A. (1981). The fulturae (“compound synapticulae”), their structure and reconsideration of their systematic value. Acta Palaeontologica Polonica, 25(3/4), 301–310.

    Google Scholar 

  • Gray, J. E. (1842). Pocilloporidae. Synopsis of the Contents of the British Museum (44th ed.). British Museum Natural History.

    Google Scholar 

  • Haq, B. U. (2014). Cretaceous eustasy revisited. Global and Planetary Changes, 113, 44–58. https://doi.org/10.1016/j.gloplacha.2013.12.007

    Article  Google Scholar 

  • Hardenbol, J., Thierry, J., Farley, M. B., Jacquin, T., de Graciansky, P. C., & Vail, P. R. (1998). Mesozoic and Cenozoic sequence chronostratigraphic framework of European basins, Chart 1, Mesozoic and Cenozoic sequence chronostratigraphic chart. In P. C. Graciansky, J. Hardenbol, T., Jacquin, & P. Vail (Eds.), Mesozoic and Cenozoic Sequence Stratigraphy of European Basins. (Appendix). SEPM Special Publication 60. Tulsa: Society for Sedimentary Geology.

  • Hay, W. W. (2008). Evolving ideas about the Cretaceous climate and ocean circulation. Cretaceous Research, 29, 725–753. https://doi.org/10.1016/j.cretres.2008.05.025

    Article  Google Scholar 

  • Iba, Y., & Sano, S. I. (2007). Mid-Cretaceous step-wise demise of the carbonate platform biota in the Northwest Pacific and establishment of the North Pacific biotic province. Palaeogeography, Palaeoclimatology, Palaeoecology, 245(3/4), 462–482. https://doi.org/10.1016/j.palaeo.2006.09.008

    Article  Google Scholar 

  • James, N. P. (1983). Reef environment. In P. A. Scholle, D. G. Bebout, & C. H. Moore (Eds.), Carbonate depositional environments. AAPG Memoir 33. Tulsa: The American Association of Petroleum Geologists.

  • Koby, F. (1889). Monographie des polypiers jurassiques de la Suisse (9). Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 16, 457–586.

    Google Scholar 

  • Koby, F. (1898). Monographie des polypiers crétacés de la Suisse (3). Abhandlungen der Schweizerischen Paläontologischen Gesellschaft, 24, 63–100.

    Google Scholar 

  • Kolodziej, B. (2020). A new coral genus with prominent, ramified main septum (Aptian, Tanzania). Ameghiniana. Revista de la Associación Paleontológica Argentina, 57(6), 555–565. https://doi.org/10.5710/AMGH.26.06.2020.3341

    Article  Google Scholar 

  • Kullberg, J. C., Rocha, R. B., Soares, A. F., Rey, J., Terrinha, P., Azerêdo, A. C., Callapez, P., Duarte, L. V., Kullberg, M. C., Martins, L., Miranda, J. R., Alves, C., Mata, J., Madeira, J., Mateus, O., Moreira, M., & Nogueira, C. R. (2013). A Bacia Lusitaniana, estratigrafia, paleogeografia e tectónica. In R. Dias, A., Araújo, P., Terrinha, & J. C. Kullberg (Eds.), Geologia de Portugal, II, Geologia Meso-cenozóica de Portugal (pp. 195–347). Lisbon: Livraria Escolar Editora.

  • Löser, H. (1994). La faune corallienne du mont Kassenberg à Mülheim-sur-la-Ruhr (Bassin crétacé de Westphalie, Nord Ouest de l’Allemagne). Coral Research Bulletin, 3, 1–93.

    Google Scholar 

  • Löser, H. (2002). Biostratigraphical dating of Cretaceous coral communities using large data sets. Paläontotologische Zeitschrift, 76, 75–81.

    Article  Google Scholar 

  • Löser, H. (2004). PaleoTax—a database program for palaeontological data. Computer & Geosciences, 30(5), 513–521. https://doi.org/10.1016/j.cageo.2004.03.009

    Article  Google Scholar 

  • Löser, H. (2012). Intraspecific variation in the genus Stelidioseris (family Actinastraeidae, suborder Archeocaeniina, order Scleractinia; Jurassic-Cretaceous). Geologica Belgica, 15(4), 382–387.

    Google Scholar 

  • Löser, H. (2013a). Taxonomy and distribution of the Early Cretaceous coral genus Actinastraeopsis. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 269(2), 189–202.

    Article  Google Scholar 

  • Löser, H. (2013b). Revision of the family Felixaraeidae (Scleractinia; Cretaceous). Geodiversitas, 35(4), 775793. https://doi.org/10.5252/g2013n4a1

    Article  Google Scholar 

  • Löser, H. (2014). 3. Korallen/3. Corals. Geologica Saxonica, 60(1), 17–56.

    Google Scholar 

  • Löser, H. (2015). Les coraux. In N. Morel (Ed.), Stratotype Cénomanien (pp. 280–282). Muséum national d’Histoire naturelle.

    Google Scholar 

  • Löser, H. (2016). Systematic part. Catalogue of Cretaceous Corals, 4, 1–710.

    Google Scholar 

  • Löser, H. (2021). Corals from the Early Cretaceous (?Late Valanginian - Aptian) of Puebla (Mexico): Family Solenocoeniidae. Paleontologia Mexicana, 10, 37–51.

    Google Scholar 

  • Löser, H., & Bilotte, M. (2017). Taxonomy of a platy coral association from the Late Cenomanian of the southern Corbières (Aude, France). Annales de Paléontologie, 103, 3–17. https://doi.org/10.1016/j.annpal.2016.10.005

    Article  Google Scholar 

  • Löser, H., Heinrich, M., & Schuster, U. (2019). Korallen von Rußbach und Gosau (Coniac-Santon; Österreich). CPress.

    Google Scholar 

  • Löser, H., Steuber, T., & Löser, C. (2018). Early Cenomanian coral faunas from Nea Nikopoli (Kozani, Greece; Cretaceous). Carnets de Géologie/Notebooks on Geology, 18(3), 23–121. https://doi.org/10.4267/2042/66094

    Article  Google Scholar 

  • Löser, H., Werner, W., & Darga, R. (2013). A middle Cenomanian coral fauna from the Northern Calcareous Alps (Bavaria, Southern Germany)—new insights into the evolution of Mid-Cretaceous corals. Zitteliana, A53, 37–76.

    Google Scholar 

  • Melnikova, G. K., Roniewicz, E., & Löser, H. (1993). New microsolenid coral genus Eocomoseris (Scleractinia, Early Lias-Cenomanian). Annales Societatis Geologorum Poloniae, 63, 3–12.

    Google Scholar 

  • Michelin, H. (1841). Iconographie zoophytologique. Description par localités et terrains des polypiers fossiles de France (1). Bertrand.

    Google Scholar 

  • Milne Edwards, H., & Haime, J. (1848). Observations sur les polypiers de la famille des astréides. Comptes Rendus Hebdomadaires des Séances de l’académie des Sciences, 27(19), 465–469.

    Google Scholar 

  • Milne Edwards, H., & Haime, J. (1849). Mémoire sur les polypiers appartenant à la famille des oculinides, au groupe intermédiaire des Pseudoastréides et à la famille des Fongides. Comptes Rendus Hebdomadaires des Séances de l’académie des Sciences, 29(4), 67–73.

    Google Scholar 

  • Orbigny, A. (1849). Note sur les polypiers fossiles. Masson.

    Google Scholar 

  • Orbigny, A. (1850). Prodrôme de Paléontologie stratigraphique universelle des animaux mollusques et rayonnés (1–2). Masson.

    Google Scholar 

  • Orbigny, A. (1851). Cours élémentaire de Paléontologie (3:) Polypiers ou Zoophytes. Masson.

    Google Scholar 

  • Pandey, D. K., McRoberts, C. A., & Pandit, M. K. (1999). Dimorpharaea de Fromentel, 1861 (Scleractinia, Anthozoa) from the Middle Jurassic of Kachchh, India. Journal of Paleontology, 73, 1015–1028.

    Article  Google Scholar 

  • Reuss, A. E. (1846). Die Versteinerungen der böhmischen Kreideformation (2). Schweitzerbart.

    Google Scholar 

  • Rey, J. (2006). Stratigraphie séquentielle et séquences de dépôt dans le Crétacé Inférieur du Bassin Lusitanien. Ciências da Terra, Special, 6, 1–120.

    Google Scholar 

  • Roniewicz, E. (2011). Early Norian (Triassic) corals from the Northern Calcareous Alps, Austria, and the intra-Norian faunal turnover. Acta Palaeontologica Polonica, 56(2), 401–428. https://doi.org/10.4202/app.2009.0092

    Article  Google Scholar 

  • Segura, M., Barroso-Barcenilla, F., Callapez, P. M., García-Hidalgo, J. F., & Gil, J. (2014). Depositional sequences and cephalopod assemblages in the upper Cenomanian-lower Santonian of the Iberian Peninsula (Spain and Portugal). Geologica Acta, 12, 19–27. https://doi.org/10.1344/105.000002056

    Article  Google Scholar 

  • Skelton, P. W. (2006). Introduction to the Cretaceous. In P. W. Skelton (Ed.), The Cretaceous world (pp. 9–41). Cambridge University Press.

    Google Scholar 

  • Soares, A. F. (1980). A «Formação Carbonatada» na região do Baixo Mondego. Comunicações dos Serviços Geológicos de Portugal, 66, 99–109.

    Google Scholar 

  • Soares, A. F., Kullberg, J. C., Marques, J. F., Rocha, R. B., & Callapez, P. M. (2012). Tectono-sedimentary model for the evolution of the Silves Group (Triassic, Lusitanian Basin, Portugal). Bulletin de la Société Géologique de France, 183(3), 203–216. https://doi.org/10.2113/gssgfbull.183.3.203

    Article  Google Scholar 

  • Stanley, S. M., & Hardie, L. A. (1998). Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144, 3–19.

    Article  Google Scholar 

  • Stoliczka, F. (1873). The corals or Anthozoa from the Cretaceous rocks of South India. Memoirs of the Geological Survey of India, Palaeontologia Indica, (4), 8(4/5), 130–202.

    Google Scholar 

  • Tomes, R. F. (1893). Observations on the affinities of the genus Astrocoenia. Quarterly. Journal of the Geological Society of London, 49, 569–573.

    Article  Google Scholar 

  • Tucker, M. E., & Wright, V. P. (1992). Carbonate depositional environments. Blackwell Scientific Publications.

    Google Scholar 

  • Vaughan, T. W., & Wells, J. W. (1943). Revision of the suborders, families and genera of Scleractinia. Special Papers. Geological Society of America, 44, 1–363.

    Article  Google Scholar 

  • Wells, J. W. (1933). Corals of the Cretaceous of the Atlantic and Gulf Coastal plains and Western Interior of the United States. Bulletins of American Paleontology, 18(67), 83–292.

    Google Scholar 

  • Wilson, R. C. L., Hiscott, R., Willis, M., & Gradstein, F. (1989). The Lusitanian Basin of west central Portugal, Mesozoic and Tertiary tectonic, stratigraphic and subsidence history. In A. Tankard, & H. Balkwill (Eds.), Extensional tectonics and stratigraphy of the North Atlantic margins. AAPG Memoir, 46, 341–361.

Download references

Acknowledgements

Fieldwork and material preparation was supported by the UNAM/DGAPA PAPIIT project IN101111 (Mexico). Authors are grateful to the Earth Sciences Department at the University of Coimbra for access to the laboratory facilities. Pedro Callapez would like to thank the institutional support of CITEUC – Centro de Investigação da Terra e do Espaço da Universidade de Coimbra (Earth and Space Research Centre from the University of Coimbra) and FCT – Fundação para a Ciência e Tecnologia. Preparation of thin sections in the ERNO laboratory by Aimée Orcí (Hermosillo, Sonora, Mexico) is gratefully acknowledged. The English text correction was realised by Matthew Copley (Barcelona). Two anonymous reviews and advice of the editors helped to improve the quality of the publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hannes Löser.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Löser, H., Callapez, P.M. Upper Cenomanian and lower Turonian (Cretaceous) corals from the Tethyan West Portuguese Carbonate Platform. J Iber Geol 48, 141–162 (2022). https://doi.org/10.1007/s41513-022-00186-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-022-00186-3

Keywords

Palabras clave

Navigation