Skip to main content

Advertisement

Log in

Diagenetic and detrital influences on clay mineralogy and carbon isotope geochemistry of Campanian–Maastrichtian sediments in the Tremp-Graus Basin (southern Pyrenees, Spain)

Influencias diagenéticas y detríticas en la mineralogía de las arcillas y en la geoquímica de los isótopos de carbono de los sedimentos del Campaniano-Maastrichtiano de la cuenca de Tremp-Graus (sur de los Pirineos, España)

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

A 1000 m-thick sequence of Upper Cretaceous sediments outcropping in the Isabena Valley (Tremp-Graus Basin, Spain) has been studied to explore the evolution of environmental conditions that prevailed in this basin. A biostratigraphic study based on calcareous nannofossils was carried out to better constraint the age of the deposits, supplemented by carbon isotope stratigraphy on bulk carbonates. Clay mineral assemblages were identified by X-Ray diffraction combined with organic matter (OM) characterisation by Rock–Eval pyrolysis. The Late Campanian Event and Campanian Maastrichtian Boundary Event are clearly identified from the new δ13Ccarb dataset. The clay assemblage is composed of a complex mixture of chlorite, illite, kaolinite and mixed-layers including illite–smectite and chlorite–smectite. A progressive illitisation of smectite is recorded from the top to the base of the section due to the increasing burial depth. This evolution is consistent with increasing Tmax values of OM evolving from 425 (immature OM) to 449 °C (mature OM) from the top to the base of the section. Thus, detrital minerals are preserved only in the upper part of the section. The clay sedimentation is dominated by smectites likely originating from the Ebro massif, while increasing proportions of kaolinite are recorded from the uppermost Campanian and during the Maastrichtian. This evolution of the clay mineral assemblage is interpreted as a result from a change of source from south to northeast, with contributions from kaolinite-rich weathering profiles (including bauxites) to the northeast of the study area, reflecting a more hydrolysing climate.

Resumen

Una secuencia de 1.000 m de espesor de sedimentos del Cretácico Superior aflorantes en el Valle del Isábena (Cuenca de Tremp-Graus, España) se fue estudiado para explorar la evolución de las condiciones ambientales que prevalecieron en esta cuenca. Un estudio bioestratigráfico basado en nanofósiles calcáreos para restringir mejor la edad de los depósitos se ha realizado, complementado con una estratigrafía isotópica del carbono en los carbonatos masivos. Los conjuntos de minerales de arcilla se identificaron a través de la difracción de rayos X combinada con la caracterización de la materia orgánica (MO) utilizando pirólisis Rock-Eval. El Evento Campaniano Tardío y el Evento Limítrofe Campaniano Maastrichtiano se identifican claramente a partir del nuevo conjunto de datos δ13C. El conjunto de arcillas está compuesto por una compleja mezcla de clorita, illita, caolinita y capas mixtas que incluyen illita-esmectita y clorita-esmectita. Se registra una progresiva ilitización de la esmectita desde la parte superior hasta la base de la sección debido al aumento de la profundidad de enterramiento. Esta evolución es coherente con el aumento de los valores de Tmáx de la MO que evolucionan de 425 (MO inmadura) a 449 °C (MO madura) desde la parte superior hasta la base de la sección. Así, los minerales detríticos se conservan sólo en la parte superior de la sección. La sedimentación de arcilla está dominada por esmectitas probablemente originadas en el macizo del Ebro, mientras que se registran proporciones crecientes de caolinita desde el Campaniense superior y durante el Maastrichtiano. Esta evolución conjunto de minerales arcillosos se interpreta como el resultado de un cambio de fuente del sur al noreste, con contribuciones de perfiles de meteorización ricos en caolinita (incluyendo bauxitas) al noreste del área de estudio, reflejando un clima más hidrolizado.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Açıkalın, S., Ocakoğlu, F., Yılmaz, İÖ., Vonhof, H., Hakyemez, A., & Smit, J. (2016). Stable isotopes and geochemistry of a Campanian-Maastrichtian pelagic succession, Mudurnu-Göynük Basin, NW Turkey: Implications for palaeoceanography, palaeoclimate and sea-level fluctuations. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 453–466.

    Article  Google Scholar 

  • Ardèvol, L., Klimowitz, J., Malagón, J., & Nagtegaal, P. J. (2000). Depositional sequence response to foreland deformation in the Upper Cretaceous of the Southern Pyrenees, Spain. American Association of Petroleum Geologists Bulletin, 84, 566–587.

    Google Scholar 

  • Bárdossy, G., & Dercourt, J. 1990. Les gisements de bauxites téthysiens (Méditerranée, Proche et Moyen-Orient); cadre paléogéographique et contrôles génétiques. Bulletin de la Société Géologique de France 8ème série, VI, 6, 869–888.

  • Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoue, S., & Patrier, P. (2015). Chlorite and chloritization processes through mixed-layer mineral series in low-temperature geological systems—A review. Clay Minerals, 50, 497–523.

    Article  Google Scholar 

  • Behar, F., Beaumont, V., & Penteado, H. D. B. (2001). Rock-Eval 6 technology: Performances and developments. Oil and Gas Science and Technology/Revue De L’institut Français Du Pétrole, 56, 111–134.

    Google Scholar 

  • Berastegui, X., Garcia-Senz, J.M., & Losantos, M. (1990). Tecto-sedimentary evolution of the Organya extensional basin (central south Pyrenean unit, Spain) during the Lower Cretaceous. Bulletin de la Société Géologique de France 8ème Série, VI, 2, 251–264.

  • Bond, R. M. G., & McClay, K. R. (1995). Inversion of a Lower Cretaceous extensional basin, South Central Pyrenees, Spain. In J. G. Buchanan & P. G. Buchnan (Eds.), Basin inversion (Vol. 88, pp. 415–431). Geological Society of London Special Publications.

    Google Scholar 

  • Bown, P. R., & Young, J. R. (1998). Techniques. In P. R. Bown (Ed.), Calcareous nannofossils biostratigraphy (pp. 16–28). British Micropaleontology Society Publication Series, Chapman and Hall/Kluwer Academic.

    Chapter  Google Scholar 

  • Burnett, J. A., Gallagher, L. T., & Hampton, M. J. (1998). Upper Cretaceous (pp. 132–199). Springer.

    Google Scholar 

  • Chamley, H. (1989). Clay sedimentology (p. 623). Springer.

    Book  Google Scholar 

  • Chamley, H., Deconinck, J.-F., & Millot, G. (1990). Sur l’abondance des minéraux smectitiques dans les sédiments marins communs déposés lors des périodes de haut niveau marin du Jurassique supérieur au Paléogène. Comptes Rendus de l’Academia des Sciences Paris Séries II, 311, 1529–1536.

    Google Scholar 

  • Chanvry, E., Deschamps, R., Joseph, P., Puigdefàbregas, C., Poyatos-Moré, M., Serra-Kiel, J., Garcia, D., & Teinturier, S. (2018). The influence of intra-basinal tectonics in the stratigraphic evolution of piggyback basin fills: Towards a model from the Tremp-Graus-Ainsa Basin (South-Pyrenean Zone, Spain). Sedimentary Geology, 377, 34–62.

    Article  Google Scholar 

  • Chenot, E., Deconinck, J.-F., Pucéat, E., Pellenard, P., Guiraud, M., Jaubert, M., Jarvis, I., Thibault, N., Cocquerez, T., Bruneau, L., Razmjooei, M. J., Boussaha, M., Richard, J., Sizun, J.-P., & Stemmerik, L. (2018). Continental weathering as a driver of Late Cretaceous cooling: New insights from clay mineralogy of Campanian sediments from the southern Tethyan margin to the Boreal realm. Global and Planetary Change, 162, 292–312.

    Article  Google Scholar 

  • Chenot, E., Pellenard, P., Martinez, M., Deconinck, J.-F., Amiotte-Suchet, P., Thibault, N., Bruneau, L., Cocquerez, T., Laffont, R., Pucéat, E., et al. (2016). Clay mineralogical and geochemical expressions of the “Late Campanian Event” in the Aquitaine and Paris basins (France): Palaeoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 447, 42–52.

    Article  Google Scholar 

  • Chenot, E., Pucéat, E., Freslon, N., Deconinck, J.-F., Razmjooei, M. J., & Thibault, N. (2021). Late Cretaceous changes in oceanic currents and sediment sources in the eastern Tethys: Insights from Nd isotopes and clay mineralogy. Global and Planetary Change, 198, 103353.

    Article  Google Scholar 

  • Choukroune, P. (1976). Structure et évolution tectonique de la zone nord-pyrénéenne. Analyse de la déformation dans une portion de chaîne à schistosité subverticale. Mémoires de la Société Géologique de France, 55(127), 116.

    Google Scholar 

  • Chumakov, N. M., Zharkov, M. A., Herman, A. B., Doludenko, M. P., Kalandadze, N. N., Lebedev, E. A., Ponomarenko, A. G., & Rautian, A. S. (1995). Climate belts of the mid-Cretaceous time. Stratigraphy and Geological Correlation, 3, 241–260.

    Google Scholar 

  • Deconinck, J.-F., & Chamley, H. (1995). Diversity of smectite origins in the Late Cretaceous sediments: Example of chalks from northern France. Clay Minerals, 30, 365–380.

    Article  Google Scholar 

  • Dellisanti, F., Pini, G. A., & Baudin, F. (2010). Use of Tmax as a thermal maturity indicator in orogenic successions and comparison with clay mineral evolution. Clay Minerals, 45, 115–130.

    Article  Google Scholar 

  • Disnar, J. R. (1994). Determination of maximum paleotemperatures of burial (MPTB) of sedimentary rocks from pyrolysis data on the associated organic matter: Basic principles and practical application. Chemical Geology, 118, 289–299.

    Article  Google Scholar 

  • Espitalié, J. (1986). Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance. Thermal modelling in sedimentary basins (pp. 475–496). Paris: Technip.

    Google Scholar 

  • Espitalié, J., La Porte, J. L., Madec, M., Marquis, F., Le Plat, P., Paulet, J., & Boutefeu, A. (1977). Rapid method for source rocks characterization and for determination of petroleum potential and degree of evolution. Oil and Gas Science and Technology Revue de L’institut Français du Pétrole, 32, 23–42.

    Article  Google Scholar 

  • Gale, A. S., Mutterlose, J., & Batenburg, S. (2021). Chapter 27—The Cretaceous period. In The geological time scale (Vol. 2, 1357 p).

  • Godet, A., Bodin, S., Adatte, T., & Föllmi, K. B. (2008). Platform-induced clay-mineral fractionation along a northern Tethyan basin-platform transect: Implications for the interpretation of Early Cretaceous climate change (Late Hauterivian-Early Aptian). Cretaceous Research, 29, 830–847.

    Article  Google Scholar 

  • Jarvis, I., Mabrouk, A., Moody, R. T. J., & de Cabrera, S. (2002). Late Cretaceous (Campanian) carbon isotope events, sea-level change and correlation of the Tethyan and Boreal realms. Palaeogeography Palaeoclimatology, Palaeoecology, 188, 215–248.

    Article  Google Scholar 

  • Jung, C., Voigt, S., & Friedrich, O. (2012). High-resolution carbon-isotope stratigraphy across the Campanian-Maastrichtian boundary at Shatsky Rise (tropical Pacific). Cretaceous Research, 37, 177–185.

    Article  Google Scholar 

  • Lafargue, E., Marquis, F., & Pillot, D. (1998). Les applications de Rock-Eval 6 dans l’exploration et la production des hydrocarbures, et dans les études de contamination des sols. Oil and Gas Science and Technology Revue de L’institut Français du Pétrole, 53, 421–437.

    Article  Google Scholar 

  • Laurent, Y., Le Loeuff, J., Bilotte, M., Buffetaut, E., & Odin, G. S. (2001). Campanian-Maastrichtian continental-marine connection at the Aquitaine-Pyrenees-Provence area (S France) Chapter D10. In G. S. Odin (Ed.), The Campanian-Maastrichtian stage boundary characterisation at Tercis-les-Bains (France) and correlation with Europe and other continents developments in palaeontology and stratigraphy (pp. 657–674). Elsevier.

    Google Scholar 

  • Leren, B. L. S., Howell, J., Enge, H., & Martinius, A. W. (2010). Controls on stratigraphic architecture in contemporaneous delta systems from the Eocene Roda Sandstone, Tremp-Graus Basin, northern Spain. Sedimentary Geology, 229, 9–40.

    Article  Google Scholar 

  • Martín-Chivelet, J., Floquet, M., Garcia-Senz, J., Callopez, P. M., López-Mir, B., Muñoz, J. A., Barroso-Barcenilla, F., Segura, M., Soares, A. F., Morgado, Dinis P., Fonseca-Marques, J., & Arbués, P. (2019). Late cretaceous post rift to convergence in Iberia. In C. Quesada & J. T. Oliveira (Eds.), The geology of Iberia, Chapter 7, a geodynamical approach (p. 285). Springer Nature.

    Chapter  Google Scholar 

  • Melinte-Dobrinescu, M. C., & Bojar, A.-V. (2010). Late Cretaceous carbon- and oxygen isotope stratigraphy, nannofossil events and paleoclimate fluctuations in the Haţeg area (SW Romania). Palaeogeography, Palaeoclimatology, Palaeoecology, 293, 295–305.

    Article  Google Scholar 

  • Mey, P. H. W., Nagtegaal, P. J. C., Roberti, K. J., & Hartevelt, J. J. A. (1968). Lithostratigraphic subdivision of post-hercynian deposits in the South-Central Pyrenees, Spain. Leidse Geologische Mededelingen, 41, 221–228.

    Google Scholar 

  • Moore, D. M., & Reynolds, R. C. (1997). X-Ray diffraction and the identification and analysis of clay minerals (2nd ed., p. 378). New York: Oxford University Press.

    Google Scholar 

  • Muñoz, J. A. (1992). Evolution of a continental collision belt: ECORS-Pyrenees crustal balanced cross-section. In K. R. McClay (Ed.), Thrust tectonics (pp. 235–246). Springer.

    Chapter  Google Scholar 

  • Nagtegaal, P. J. C. (1972). Depositional history and clay minerals of the Upper Cretaceous basin in the South-Central Pyrenees, Spain. Leidse Geologische Mededelingen, 47(2), 251–275.

    Google Scholar 

  • Odin, G. S. (2001). The Campanian-Maastrichtian boundary: Characterisation at Tercis (Landes, SW France). In G. S. Odin (Ed.), The Campanian-Maastrichtian stage boundary characterisation at Tercis-les-Bains (France) and correlation with Europe and other continents. Developments in palaeontology and stratigraphy (pp. 785–804). Elsevier.

    Google Scholar 

  • Ogg, J. G., Ogg, G. M., & Gradstein, F. M. (2016). A concise. Geological Time Sale, 234 p.

  • Perch-Nielsen, K. (1985). Mesozoic calcareous nannofossils. In H. M. Bolli, J. B. Saunders, & K. Perch-Nielsen (Eds.), Plankton stratigraphy (pp. 329–426). Cambridge University Press.

    Google Scholar 

  • Perdiou, A., Thibault, N., Anderskouv, K., van Buchem, F., Buijs, G. J. A., & Bjerrum, C. J. (2016). Orbital calibration of the late Campanian carbon isotope event in the North Sea. Journal of the Geological Society, 173, 504–517.

    Article  Google Scholar 

  • Petschick, R. (2010). MacDiff Ver. 4.2.6. Manual Geologisch-Palaontologisches Institute Johann Wolfgang Goethe Universitat Frankfurt Main senckenberganlage, pp. 32–34.

  • Philip, J., & Floquet, M. (2000). Early Campanian (83–80.5 Ma). In: Crasquin, S. (Coord.), Atlas Peri-Tethys, Palaeogeographic maps. Explanatory notes (pp. 145–152). Commission for the Geological Map of the World.

  • Puig, J. M., Cabello, P., Howell, J., & Arbués, P. (2019). Three-dimensional characterisation of sedimentary heterogeneity and its impact on subsurface flow behaviour through the braided-to-meandering fluvial deposits of the Castissent Formation (late Ypresian, Tremp-Graus Basin, Spain). Marine and Petroleum Geology, 103, 661–680.

    Article  Google Scholar 

  • Puigdefàbregas, C., Muñoz, J. A., & Vergés, J. (1992). Thrusting and foreland basin evolution in the southern Pyrenees. In K. R. McClay (Ed.), Thrust tectonics (pp. 247–254). Springer.

    Chapter  Google Scholar 

  • Puigdefàbregas, C., & Souquet, P. (1986). Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics, 129, 173–203.

    Article  Google Scholar 

  • Razmjooei, M., Thibault, N., Kani, A., Dinarès-Turrell, J., Pucéat, E., Shahriari, S., Radmacher, W., Jamali, A. M., Ullmann, C. V., Voigt, S., & Cocquerez, T. (2018). Integrated bio- and carbon isotope stratigraphy of the Upper Cretaceous Gurpi Formation (Iran): A new reference for the eastern Tethys and its implications for large-scale correlation of stage boundaries. Cretaceous Research, 91, 312–340.

    Article  Google Scholar 

  • Razmjooei, M. J., Thibault, N., Kani, A., Mahanipour, A., Boussaha, M., & Korte, C. (2014). Coniacian-Maastrichtian calcareous nannofossil biostratigraphy and carbon-isotope stratigraphy in the Zagros Basin (Iran): Consequences for the correlation of the Late Cretaceous Stage Boundaries between the Tethyan and Boreal realms. Newsletters on Stratigraphy., 47, 183–209.

    Article  Google Scholar 

  • Robert, R., Robion, P., Souloumiac, P., David, C., & Saillet, E. (2018). Deformation bands, early markers of tectonic activity in front of a fold-and thrust belt: Example from the Tremp-Graus basin, southern Pyrenees, Spain. Journal of Structural Geology, 110, 65–85.

    Article  Google Scholar 

  • Roure, F., Choukroune, P., Berastegui, X., Munoz, J. A., Villien, A., Matheron, P., Bareyt, M., Séguret, M., Camara, P., & Deramond, J. (1989). ECORS deep seismic data and balanced cross sections: Geometric constraints on the evolution of the Pyrenees. Tectonics, 8, 41–50.

    Article  Google Scholar 

  • Sabatino, N., Meyers, S. R., Voigt, S., Coccioni, R., & Sprovieri, M. (2018). A new high-resolution carbon-isotope stratigraphy for the Campanian (Bottaccione section): Its implications for global correlation, ocean circulation, and astrochronology. Palaeogeography, Palaeoclimatology, Palaeoecology, 489, 29–39.

    Article  Google Scholar 

  • Séguret, M. (1972). Étude tectonique des nappes et séries décollées de la partie centrale des Pyrénées. Thèse de Doctorat. Université de Montpellier, 155 p.

  • Simó, A. (1986). Carbonate platform depositional sequences, upper Cretaceous, South Central Pyrenees (Spain). Tectonophysics, 129, 205–231.

    Article  Google Scholar 

  • Simó, A. (1989). Upper Cretaceous platform to basin depositional sequence development, Tremp basin, south-central Pyrenees, Spain. Controls on Carbonate Platform and Basin Development SEPM Special Publication, 44, 365–377.

    Article  Google Scholar 

  • Simó, A., & Puigdefàbregas, C. (1985). Transition from shelf to basin on an active slope, Upper Cretaceous, Tremp area, Southern Pyrenees. In 6th European Regional Meeting of Sedimentology, Lerida, Excursion no. 2, pp. 63–108.

  • Smektala, F., Buffetaut, E., & Deconinck, J. F. (2014). Rivers as repositories for fossil vertebrates: A case study from the Upper Cretaceous of southern France. Proceedings of the Geologists’ Association, 125, 567–577.

    Article  Google Scholar 

  • Souquet, P. (1967). Le Crétacé supérieur sud-pyrénéen en Catalogne (p. 529). Thesis, Université de Toulouse.

    Google Scholar 

  • Środoń, J., Clauer, N., Huff, W., Dudek, T., & Banaś, M. (2009). K-Ar dating of the Lower Palaeozoic K-bentonites from the Baltic Basin and the Baltic Shield: Implications for the role of temperature and time in the illitization of smectite. Clay Minerals, 44, 361–387.

    Article  Google Scholar 

  • Thibault, N. (2016). Calcareous nannofossil biostratigraphy and turnover dynamics in the late Campanian-Maastrichtian of the tropical South Atlantic. Revue De Micropaléontologie, 59, 57–69.

    Article  Google Scholar 

  • Thibault, N. (2020). Applied biostratigraphy and paleoecology of calcareous nannofossils: Take-home messages from Late Cretaceous examples. In Nannotalks 6–11 July 2020. An online conference. http://ina.tmsoc.org/meetings/Nannotalks2020.html.

  • Thibault, N., & Martinez, M. (2017). Diachronism of key fossil stratigraphic markers in the Mesozoic: Consequences for the Geologic Time Scale and for paleoenvironmental change. In International meeting of sedimentology 2017, Toulouse, France, p. 87.

  • Thibault, N., Anderskouv, K., Bjerager, M., Boldreel, L. O., Jelby, M. E., Stemmerik, L., & Surlyk, F. (2015). Upper Campanian-Maastrichtian chronostratigraphy of the Skæslskør-1 core, Denmark: Correlation at the basinal and global scale and implications for changes in sea-surface temperatures. Lethaia, 48, 549–560.

    Article  Google Scholar 

  • Thibault, N., Harlou, R., Schovsbo, N., Schiøler, P., Minoletti, F., Galbrun, B., Lauridsen, B. W., Sheldon, E., Stemmerik, L., & Surlyk, F. (2012a). Upper Campanian-Maastrichtian nannofossil biostratigraphy and high-resolution carbon–isotope stratigraphy of the Danish Basin: Towards a standard δ13C curve for the Boreal Realm. Cretaceous Research, 33, 72–90.

    Article  Google Scholar 

  • Thibault, N., Husson, D., Harlou, R., Gardin, S., Galbrun, B., Huret, E., & Minoletti, F. (2012b). Astronomical calibration of upper Campanian-Maastrichtian carbon isotope events and calcareous plankton biostratigraphy in the Indian Ocean (ODP Hole 762C): Implication for the age of the Campanian-Maastrichtian boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 337–338, 52–71.

    Article  Google Scholar 

  • Thiry, M. (2000). Palaeoclimatic interpretation of clay minerals in marine deposits: An outlook from the continental origin. Earth-Science Reviews, 49, 201–221.

    Article  Google Scholar 

  • Thiry, M., & Jacquin, T. (1993). Clay mineral distribution related to rift activity, sea-level changes and paleoceanography in the Cretaceous of the Atlantic Ocean. Clay Minerals, 28, 61–84.

    Article  Google Scholar 

  • Thomson, K. D., Stockli, D. F., Odlum, M. L., Tolentino, P., Puigdefàbregas, C., Clark, J., & Fildani, A. (2020). Sediment provenance and routing evolution in the Late Cretaceous-Eocene Ager Basin, south-central Pyrenees, Spain. Basin Research, 32, 485–504.

    Article  Google Scholar 

  • Van Hoorn, B. (1970). Sedimentology and paleogeography of an upper Cretaceous turbidite Basin in the South-Central Pyrenees, Spain. Leidse Geolische Mededelingen, 45, 73–154.

    Google Scholar 

  • Vergés, J., Fernàndez, M., & Martínez, A. (2002). The Pyrenean orogen: pre-, syn-, and post-collisional evolution. Journal of the Virtual Explorer, 8, 55–74.

    Article  Google Scholar 

  • Voigt, S., Friedrich, O., Norris, R. D., & Schönfeld, J. (2010). Campanian-Maastrichtian carbon isotope stratigraphy: Shelf-ocean correlation between the European shelf sea and the tropical Pacific Ocean. Newsletters on Stratigraphy, 44, 57–72.

    Article  Google Scholar 

  • Voigt, S., Gale, A. S., Jung, C., & Jenkyns, H. C. (2012). Global correlation of Upper Campanian-Maastrichtian successions using carbon-isotope stratigraphy: Development of a new Maastrichtian timescale. Newsletters on Stratigraphy, 45, 25–53.

    Article  Google Scholar 

  • Wagreich, M., Hohenegger, J., & Neuhuber, S. (2012). Nannofossil biostratigraphy, strontium and carbon isotope stratigraphy, cyclostratigraphy and an astronomically calibrated duration of the Late Campanian Radotruncana calcarata Zone. Cretaceous Research, 38, 80–96.

    Article  Google Scholar 

  • Wendler, I., Willems, H., Gräfe, K.-U., Ding, L., & Luo, H. (2011). Upper Cretaceous inter-hemispheric correlation between the Southern Tethys and the Boreal: Chemo- and biostratigraphy and paleoclimatic reconstructions from a new section in the Tethys Himalaya, S-Tibet. Newsletters on Stratigraphy, 44, 137–171.

    Article  Google Scholar 

  • Whitchurch, A. L., Carter, A., Sinclair, H. D., Duller, R. A., Whittaker, A. C., & Allen, P. A. (2011). Sediment routing system evolution within a diachronously uplifting orogen: Insights from detrital zircon thermochronological analyses from the South-Central Pyrenees. American Journal of Science, 311, 442–482.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the ANR Anox-Sea ANR-12-BS06-0011 coordinated by E. Pucéat. We are grateful to Philippe Joseph and Emmanuelle Chanvry for their help in the field and Mathieu Thévenot for his help in laboratory. N. Thibault and M.J. Razmjooei acknowledge Carlsbergfondet grant CF16-0457. The constructive reviews by two anonymous reviewers and by the associate editor, Javier Luque, have greatly contributed to the study. We also thank them and Sebastien Potel for helpful suggestions about mineralogical expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Chenot.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Data 1

Supplementary file 1. Geochemistry and clay mineralogy database (XLSX 55 KB)

Supplementary Data 2

Supplementary file 2. Examples of diffractograms of bulk sediments (PDF 3529 KB)

Supplementary Data 3

Supplementary file 3. Examples of diffractograms of clay minerals (PDF 835 KB)

Supplementary Data 4

Supplementary file 4. Calcareous nannofossil pictures (PDF 2371 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenot, E., Deconinck, J.F., Baudin, F. et al. Diagenetic and detrital influences on clay mineralogy and carbon isotope geochemistry of Campanian–Maastrichtian sediments in the Tremp-Graus Basin (southern Pyrenees, Spain). J Iber Geol 48, 29–43 (2022). https://doi.org/10.1007/s41513-021-00180-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-021-00180-1

Keywords

Palabras clave

Navigation