Skip to main content
Log in

Facies characteristics, diagenetic phenomena, and the impact of clay minerals on the dolomitization of Abu Tartur phosphorites (Western Desert, Egypt)

  • Research
  • Published:
Journal of Sedimentary Environments Aims and scope Submit manuscript

Abstract

The present study deals with the microfacies diagnostic features of the Duwi Formation (Western Desert, Egypt). The aim is also to provide some insight into the spatio-temporal occurrence of diagenetic features, especially dolomitization in the different facies and their paragenesis. The clay mineralogy has been studied aiming to recognize its role as a principal source of Mg+2 for dolomitization. Stratigraphically, the Duwi Formation covers unconformably the Quseir Formation and rests conformably under the Dakhla Formation. Sedimentologically, the Duwi Formation includes phosphorite, black shale, glauconite, phosphatic limestone, chalky limestone, fine sandstone to siltstone, and dolomite. These sediments represent the first onset of fully marine conditions and accumulated in a pre-existing depression enclosed by the Dakhla uplift in the west and the Kharga uplift in the east. The presence of dolomites is assigned to strong dolomitization at several horizons. Sometimes, dolomite is represented by scattered rhombs or pockets within other microfacies types. The smectite–illite conversion model is invoked as the supplier of Mg+2 and Ca+2 ions that formed dolomites during the late stages of diagenesis. However, more detailed research work is needed to better characterize the role played by clays during the formation of dolomite in the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Plate A
Plate B
Fig. 4
Plate C
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that all the obtained data from the present work have been used, inserted, introduced and diagrammed in the present work. No more data are available for more usage. The data have been completely represented in the form of field photos, photomicrographs, tables and figures that appear in the manuscript.

References

  • Abed, A., & Sadaqh, R. (1998). Role of Upper cretaceous oyster bioherms in the deposition and accumulation of high-grade phosphorites in central Jordan. Journal of Sedimentary Research, 68, 1009–1020. https://doi.org/10.2110/jsr.68.1009

    Article  CAS  ADS  Google Scholar 

  • Ahmad, F., Farouk, S., & El-Moghny, M. (2014). A regional stratigraphic correlation for the upper Campanian phosphorites and associated rocks in Egypt and Jordan. Proceedings of Geologists Association, 125, 419–431. https://doi.org/10.1016/j.pgeola.2014.06.002

    Article  Google Scholar 

  • Ahmed, E. (1988). The role of microbial activity in the formation of the high-grade Egyptian phosphorites. Bulletin of Faculty of Science, Assiut University, 17, 157–169.

    Google Scholar 

  • Ahmed, E. & Kurzweil, J. (2002). Sedimentological, mineralogical and geochemical characteristics of Upper Cretaceous Egyptian phosphorites with special reference to the microbial role in phosphogenesis. In Wagreich, M. (Ed.), Aspects of Cretaceous stratigraphy and paleobiogeography. Ȍsterrischiche Akademischer Wissschaften Kommitte, 15, 11–34.

  • Badiozamani, K. (1973). The Dorag dolomitization model- application to the middle ordovician of wisconson. Journal of Sedimentary Petrology, 43, 965–984.

    CAS  Google Scholar 

  • Baioumy, H., & Tada, R. (2005). Origin of late cretaceous phosphorites in Egypt. Cretaceous Research, 26, 261–275. https://doi.org/10.1016/j.cretres.2004.12.004

    Article  Google Scholar 

  • Boles, J., & Frankes, S. (1979). Clay diagenesis in Wilcox sandstones of southwest Texas: implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology, 49, 55–70.

    CAS  Google Scholar 

  • Bontognali, T., Martinez-Ruiz, F., McKenzie, J., Bahniuk, A., Anjos, S., & Vasconcelos, C. (2014). Smectite synthesis at low temperature and neutral pH in the presence of succinic acid. Applied Clay Science, 101, 553–557. https://doi.org/10.1016/j.clay.2014.09.018

    Article  CAS  Google Scholar 

  • Brauchli, M., McKezie, J., Strohmenger, C., Sadooni, F., Vasconcelos, C., & Bontognali, T. (2016). The importance of microbial mats for dolomite formation in the Dohat Faishakh sabkha Qatar. Carbonate Evaporite, 31, 339–345. https://doi.org/10.1007/s13146-015-0275-0

    Article  CAS  Google Scholar 

  • Bréhéret, J., Fourmont, A., Macaire, J., & Négrel, P. (2008). Microbially-mediated carbonates in the Holocene deposits from Sarliève, a small ncient lake of the French massif central, testify to the evolution of a restricted environment. Sedimentology, 55, 557–578.

    Article  ADS  Google Scholar 

  • Calvo, J., Blanc-Valleron, M., Rodrigues-Arandia, J., Rouchy, J. & Sanz, M. (1999). Authigenic Clay Minerals in Continental Evaporitic Environments. In Thiry, M., Simon-Coincon, R. (Eds.), Palaeoweathering. Palaeosurfaces and Related Continental Deposits, International Society of Sedimentologists, 27, 129–151. https://doi.org/10.3390/min10080718

  • Chamley H. (1989). Clay Sedimentology: New York. SpringerVerlag, BerlinHeidelberg, https://doi.org/10.1007/978-3-642-85916-8.

  • Chilinger, G. (1955). Review of Soviet literature on petroleum source rocks. American Association of Petroleum Geologists, 39, 764–767.

    Google Scholar 

  • Cuadros, J., Diaz-Hernandez, J. L., Sanchez-Navas, A., Garcia-Casco, A., & Yepes, J. (2016). Chemical and textural controls on the formation of sepiolite, palygorskite and dolomite in volcanic soils. Geoderma, 271, 99–114. https://doi.org/10.1016/j.geoderma.2016.01.042

    Article  CAS  ADS  Google Scholar 

  • De Visser, J. (1991). Clay mineral stratigraphy of Miocene to Recent marine sediments in the central Mediterranean. Geologica Ultraiectina, ISSN, 0072–1026, 75.

    Google Scholar 

  • Dunham, R. (1962). Classification of carbonate rocks according to depositional texture, In Ham, W. (Ed.), Classification of carbonate rocks. American Association of Petroleum Geologists, Special publication 1, 108–121.

  • El Ayyat, A. (2015). Lithostratigraphy, sedimentology, and cyclicity of the Duwi Formation (Late Cretaceous) at Abu Tartur plateau, Western Desert of Egypt: Evidences for reworking and redeposition. Arabian Journal of Geosciences, 8, 99–124. https://doi.org/10.1007/s12517-013-1169-x

    Article  CAS  Google Scholar 

  • El-Kammar, A. (2017). Oil shale resources in Egypt: The present status and future vision. Arabian Journal of Geosciences, 10, 439. https://doi.org/10.1007/s12517-017-3152-4

    Article  CAS  Google Scholar 

  • Embry, A., & Klovan, E. (1971). A Late Devonian reef traced on northeastern bank island, Northwest Territories. Canadian Petroleum Geologists Bulletin, 19, 730–781.

    Google Scholar 

  • Flügel, E. (2010). Microfacies of Carbonate Rocks, Analysis. Interpretation and Application: Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Friedman, M. & Sanders, J. (1967). Origin and occurrence of dolostones. In Chillinger, G., Bissell, H. & Fairbridge, R. (Eds.), Development in Sedimentology, 9A, Carbonate rocks, Elsevier, New York, 267-348

  • Friedman, I., & Halle, W. (1963). Fractionation of O18/O16 between coexisting calcite and dolomite. Journal of Geology, 71, 238–243.

    Article  CAS  ADS  Google Scholar 

  • Galehouse, J. (1971). Sedimentation analysis. In R. Carver (Ed.), Procedures in Sedimentary Petrology (pp. 65–94). Wiley.

    Google Scholar 

  • Ghorab, M. (l956). A summary of proposed rock stratigraphic classification for the Upper Cretaceous rocks in Egypt. Geological Society of Egypt, Abstract, Cairo.

  • Glenn, C., & Arthur, M. (1990). Anatomy and origin of a Cretaceous phosphorite giant. Egypt Sedimentology, 37, 123–154. https://doi.org/10.1111/j.1365-3091.1990.tb01986.x

    Article  ADS  Google Scholar 

  • Glenn, C. (1990). Depositional sequences of the Duwi, Sibaiya and Phosphate formations, Egypt: phosphogenesis and glauconitization in a Late Cretaceous epeiric sea. In Notholt, A. & Javis, I. (Eds.), Phosphorite research and development. Geological Society of London, Special publication 52, 205–222. DOI:https://doi.org/10.1144/GSL.SP.1990.052.01.15.

  • Hesse, R. (1989). Silica diagenesis: Origin of inorganic and replacement cherts. Earth Science Review, 26, 253–284. https://doi.org/10.1016/0012-8252(89)90024-X

    Article  ADS  Google Scholar 

  • Hiltabrand, R., Ferrell, R., & Billings, G. (1973). Experimental diagenesis of gulf coast argillaceous sediment. American Association of Petroleum Geologists, 57, 338–348.

    CAS  Google Scholar 

  • Irwin, H. (1980). Early diagenetic carbonate precipitation and pore fluid migration in the Kimmeridge Clay of Dorset, England. Sedimentology, 27, 577–591.

    Article  CAS  ADS  Google Scholar 

  • Issawi, B., Hassan, M., & Saad, E. (1978). Geology of the Abu Tartur Plateau, Western Desert. Egypt. Annals of the Geological Survey, Egypt, 8, 91–127.

    Google Scholar 

  • Kale, C. (1965). Possible roles of clay minerals in the formation of dolomite. Journal of Sedimentary Petrology, 35, 448–453.

    Google Scholar 

  • Katz, A., & Fridman, G. (1965). The preparation of stained acetate peels for the study of carbonate rocks. Journal of Sedimentary Petrology, 35, 248–249.

    Article  CAS  ADS  Google Scholar 

  • Kennedy, M., Pevear, D., & Hill, R. (2002). Mineral surface control of organic carbon in black shale. Science, 295, 657–660. https://doi.org/10.1126/science.1066611

    Article  CAS  PubMed  ADS  Google Scholar 

  • Khalifa, M. (1977). Geological and sedimentological studies of Gebel El Hefhuf area. Bahariya Oasis. Western Desert, Egypt. M. Sc. Thesis, Cairo University, 186 p.

  • Klitzsch, E., & Wycisk, P. (1987). Geology of the sedimentary basins of northern Sudan and bordering areas. Berliner Geowissenschaften Abhandlungen, 75(1), 97–136.

    Google Scholar 

  • Klitzsch, E., Harms, J., Leial-Nicol, A., & List, F. (1979). Major subdivisions and depositional environments of Nubia strata, southwestern Egypt. American Association of Petroleum Geologists, 63, 974–976.

    Google Scholar 

  • Kobluk, D., & Kahle, C. (1978). Geologic significance of boring and cavity-dwelling algae. Bulletin of Canadian Petroleum Geology, 26, 362–379.

    Google Scholar 

  • Liu, D., Xu, Y., Papineau, D., Yu, N., Fan, Q., Qiu, X. & Wang, H. (2019). Experimental Evidence for Abiotic Formation of Low-Temperature Proto-Dolomite Facilitated by Clay Minerals. Geochimica et Cosmochimica Acta, 247, 83–95. https://DOI.org/https://doi.org/10.1016/j.gca.2018.12.036

  • Luger, P. (1985). Stratigraphie der marine Oberkreide und des Alttertiars im sudwestlichen Obernil-Becken (SW-Aegypten) unter besonderer berueksichtigung der Micropalaontologie, Palokologie und Paaogeographie. Berliner Geowissenschaften Abhandlungen, 63, 151 p.

  • Lumsden, D. (1974). Relationships among insoluble residue, dolostone and limestone facies. Journal of Sedimentary Petrology, 44, 450–456.

    Google Scholar 

  • Mazzullo, S. (2000). Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research, 70, 10–23. https://doi.org/10.1306/2DC408F9-0E47-11D7-8643000102C1865D

    Article  CAS  ADS  Google Scholar 

  • Mchargue, T., & Price, B. (1982). Dolomite from clay in argillaceous or shale-associated marine carbonates. Journal of Sedimentary Petrology, 52, 873–886.

    CAS  Google Scholar 

  • Meister, P., Bernasconi, S., Vasconcelos, C., & McKenzie, J. (2008). Sea level changes diagenetic dolomite formation in hemipelagic sediments of the Peru Margin. Marine Geology, 252, 166–173. https://doi.org/10.1016/j.margeo.2008.04.001

    Article  ADS  Google Scholar 

  • Meister, P., Reyes, C., Beaumont, W., Rincon, M., Collins, L., Berelson, W., Stott, L., Corsetti, F., & Nealson, K. (2011). Calcium and magnesium-limited dolomite precipitation at Deep Springs Lake, California. Sedimentology, 58, 1810–1830. https://doi.org/10.1111/j.1365-3091.2011.01240.x

    Article  CAS  ADS  Google Scholar 

  • Mercedes-Martin, R., Rogerson, M., Brasier, A., Vonhof, H., Prior, T., Fellows, S., Reijmer, J., Billing, I., & Pedley, H. (2016). Growing spherulitic calcite grains in saline, hyperalkaline lakes: Experimental evaluation of the effects of Mg-clays and organic acids. Sedimentary Geology, 335, 93–102. https://doi.org/10.1016/j.sedgeo.2016.02.008

    Article  CAS  ADS  Google Scholar 

  • Pérez, A., Zarza, A., & La lglesia A. & García, R. (2015). Do magnesian clays play a role in dolomite formation in alkaline environments? An example from Castañar Cave, Cáceres (Spain). Geocaceta, 57, 15–18.

    Google Scholar 

  • Powers, W. (1957). Adjustment of clays to chemical change and the concept of the equivalence level: Cays and clay minerals, 6th International Conference (pp. 309–326). Pergamon Press.

    Google Scholar 

  • Qiu, X., Wang, H., Yao, Y., & Duan, Y. (2017). High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52. Earth Planetary Science Letters, 472, 197–205. https://doi.org/10.1016/j.epsl.2017.05.018

    Article  CAS  ADS  Google Scholar 

  • Reiss, Z., Almogi-Labin, A., Honigstein, A., Lewy, Z., Lipson-Benitah, S., Moshkovitz, S., & Zaks, Y. (1985). Late Cretaceous multiple stratigraphic frameworks of Israel. Israel Journal of Earth Sciences, 34, 147–166.

    Google Scholar 

  • Rodriguez-Blanco, J., Shaw, S., & Benning, L. (2015). A route for the direct crystallization of dolomite. American Mineralogist, 100, 1172–1181. https://doi.org/10.2138/am-2015-4963

    Article  ADS  Google Scholar 

  • Sadooni, F., Howari, F., & El-Saiy, A. (2010). Microbial dolomites from carbonate-evaporite sediments of the coastal sabkha of Abu Dhabi and their exploration implications. Journal of Petroleum Geology, 33, 289–298. https://doi.org/10.1111/j.1747-5457.2010.00480.x

    Article  CAS  ADS  Google Scholar 

  • Said, R. (1990). The Geology of Egypt (p. 734). Elsevier.

    Google Scholar 

  • Schultz, L. (1964). Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. United States Geological Survey Paper no.391-C, Washington.

  • Sediek, K., & Amer, A. (2001). Sedimentological and technological studies of Abu Tartur black shales, Western Desert. Egypt. Physical Problems of Mineral Processing, 35, 141–152.

    CAS  Google Scholar 

  • Soliman, S., & Amer, Kh. (1972). Petrology of the phosphorite deposits, Quseir area, Egypt. Transaction of Arab Mining and Petroleum Association. Cairo, 27(1), 19–48.

    Google Scholar 

  • Soudry, D. (1979). Intervention de schizophytes dans la phosphomicritization des debrits osseux. Comptes Rendus De L’académie Des Sciences, 288D, 1186–1214.

    Google Scholar 

  • Soudry, D., & Nathan, Y. (1980). Phosphate peloids from the Negev phosphorites. Journal of Geological Society of London, 137, 749–755. https://doi.org/10.1144/gsjgs.137.6.0749

    Article  ADS  Google Scholar 

  • Trape, J. (2001). A nomenclature system for granular phosphate rocks according to depositional texture. Sedimentary Geology, 145, 135–150. https://doi.org/10.1016/S0037-0738(01)00103-8

    Article  ADS  Google Scholar 

  • Tucker, M., & Wright, V. (1990). Carbonate Sedimentology. Oxford: Blackwell.

    Book  Google Scholar 

  • Van Houten, F., Bhattacharyya, D., & Mansour, S. (1984). Cretaceous Nubia Formation and correlative deposits, eastern Egypt: Major regressive-transgressive complex. Geological Society of America Bulletin, 95, 397–405.

    Article  ADS  Google Scholar 

  • Velde, B. (1995). Origin and mineralogy of clays (clays and the environment) (p. 334). Springer-Verlag.

    Book  Google Scholar 

  • Vorhies, J., & Gaines, R. (2009). Microbial dissolution of clay minerals as a source of iron and silica in marine sediments. Nature Geoscience, 2, 221–225. https://doi.org/10.1038/NGEO441CorpusID:140185631

    Article  CAS  Google Scholar 

  • Wanas, H., & Sallam, E. (2016). Abiotically-formed, primary dolomite in the mid-Eocene lacustrine succession at Gebel El-Goza El-Hamra, NE Egypt: An approach to the role of smectitic clays. Sedimentary Geology, Sedimentary Geology, 343, 132–140. https://doi.org/10.1016/j.sedgeo.2016.08.003

    Article  CAS  ADS  Google Scholar 

  • Wassef, A. (1977). On the results of geological investigations and ore reserves calculations of Abu Tartur phosphorite deposits. Annals of the Geological Survey of Egypt, 9, 1–60.

    Google Scholar 

  • Weaver, C. (1967). Potassium, illite and the ocean. Geochimica Et Cosmochimica Acta, 31, 2181–2196.

    Article  CAS  ADS  Google Scholar 

  • Weaver, C. (1989). Clays, muds and shales (p. 819). Elsevier.

    Google Scholar 

  • Wright, D. (1999). The role of sulphate-reducing bacteria and cyanobacteria in dolomite formation in the distal ephemeral lakes of the Coorong region, South Australia. Sedimentary Geology, 126, 147–157. https://doi.org/10.1016/S0037-0738(99)00037-8

    Article  CAS  ADS  Google Scholar 

  • Youssef, M. (1949). Stratigraphical studies in Kosseir area. Bulletin of Institute of Egypt, 7, 35–54.

    Google Scholar 

  • Youssef, M. (1965). Genesis of bedded phosphates. Economic Geology, 60, 590–600.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted and grateful to the editor, the editorial board, and anonymous referees for valuable comments which have greatly improved the earlier version of this paper. Funding by Assiut University (EGYT) is highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

(A) Abdalla El Ayyat (the first author) (B) Mahmoud Essa (the second author) (A) has collected the samples from the field. (A) and (B) make thin sections. (A) and (B) make X-ray analyses. (A) and (B) make microscope photography. (A) and (B) wrote the manuscript. (A) and (B) draw the figures, tables and plates. (A) wrote the references list. (A) and (B) reviewed the manuscript.

Corresponding author

Correspondence to Abdalla M. El Ayyat.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Additional information

Communicated by Maria Virginia Alves Martins

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayyat, A.M.E., Essa, M.A. Facies characteristics, diagenetic phenomena, and the impact of clay minerals on the dolomitization of Abu Tartur phosphorites (Western Desert, Egypt). J. Sediment. Environ. 9, 1–18 (2024). https://doi.org/10.1007/s43217-023-00153-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43217-023-00153-7

Keywords

Navigation