Skip to main content
Log in

A genetic link between albitic magmas and IOCG mineralization in the Ossa Morena Zone (SW Iberia)

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

A detailed geological and isotopic study of the Colmenar deposit (Ossa Morena Zone, SW Iberia) shows that the magnetite-rich mineralization formed by complex magmatic-hydrothermal processes related to the crystallization of water-rich albite-magnetite igneous rocks derived from the crystallization of unusual melts formed during anatexis in a high temperature-low pressure metamorphic regime. The most likely protolith includes a sequence of iron-rich chemical sediments, amphibolite and possible meta-evaporites of early Cambrian age. The albite-magnetite rock occurs as up to 20 cm-thick dyke and breccia bodies and show complex immiscibility relationships with an albite-K-feldspar-quartz leucogranite. Iron-rich fluids exsolved during the crystallization of these melts are responsible of the formation of hydrothermal breccias and the widespread replacement of the hosting calc-silicate hornfels by a magnetite-ferroactinolite-albite assemblage along syn-mineralization shear zones. Geochronological data obtained for mineralization and related hydrothermal alteration points to a Variscan age (ca. 340 Ma), interpreted also as the age of the high-grade metamorphism driving anatexis at the Valuengo Metamorphic Complex. Despite the low Cu and Au contents, this mineralization shares features with the IOCG systems, which in other districts show a spatial relationship with albite-rich rocks, evaporites and pre-existing iron mineralization. The observations presented from Colmenar support an alternative genetic model with prospective implications for the Ossa Morena Zone that can be extrapolated to other IOCG belts worldwide.

Resumen

El estudio geológico y geocronológico de detalle del depósito de Colmenar (Zona de Ossa Morena, SO Ibérico) muestra que la mineralización de magnetita se formó por procesos magmático-hidrotermales relacionados con la intrusión de un magma inusual (albita + magnetita) y rico en agua generado por anatexia en un ambiente metamórfico de alta temperatura y baja presión. El protolito más probable se corresponde con una secuencia de sedimentos químicos ricos en hierro, anfibolitas, y probablemente meta-evaporitas del Cámbrico Inferior. Estas rocas ricas en albita y magnetita se encuentran como brechas magmáticas y diques de hasta 20 centímetros de espesor, y presentan complejas relaciones de inmiscibilidad con leucogranitos ricos en albita, feldespato potásico y cuarzo. Los fluidos enriquecidos en hierro y exsueltos durante la cristalización de estos magmas fueron responsables de la formación de brechas hidrotermales soportadas por una matriz de ferroactinolita y magnetita, que también aparecen junto con albita remplazando rocas de silicatos cálcicos a favor de bandas de cizalla. La geocronología de la mineralización y alteración hidrotermal indica una edad Varisca (ca. 340 Ma), que se interpreta, su vez, como la edad del metamorfismo de alto grado responsable de los procesos de fusión parcial en el Núcleo Metamórfico de Valuengo. A pesar de sus bajos contenidos en Cu y Au, este estilo de mineralización comparte características con los sistemas tipo IOCG, que en otros distritos muestra relaciones espaciales con albititas, evaporitas, y mineralizaciones de hierro preexistentes. Las observaciones en Colmenar soportan un modelo genético alternativo con implicaciones prospectivas para la zona de Ossa Morena, y que es extrapolable a distritos IOCG en otras partes del mundo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

modified from Julivert et al. 1974) and Eurasia (top left). The chart shows the stratigraphic succession and temporal correlation of the main igneous and tectonic events of the Ossa Morena Zone, (right; adapted from Quesada 1992)

Fig. 2

Modified from Apraiz et al. (1996), Quesada & Sánchez-García (2002) and Expósito et al. (2003)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abalos Villaro, B., Gil Ibarguchi, I., & Eguiluz, L. (1991). Structural and metamorphic evolution of the Almaden de la Plata Core (Seville, Spain) in relation to syn-metamorphic shear between the Ossa-Morena and South Portuguese zones of the Iberian Variscan fold belt. Tectonophysics, 191(3–4), 365–387.

    Google Scholar 

  • Álvaro, J. J., Rouchy, J. M., Bechstädt, T., Boucot, A., Boyer, F., Debrenne, F., et al. (2000). Evaporitic constraints on the southward drifting of the western Gondwana margin during Early Cambrian times. Palaeogeography, Palaeoclimatology, Palaeoecology, 160(1–2), 105–122.

    Google Scholar 

  • Apraiz, A. (1998). Geología de los Macizos de Lora del Río y Valuengo (Zona de Ossa Morena). Evolución tectometamórfica y significado geodinámico (p. 575). Spain: Universidad del País Vasco.

    Google Scholar 

  • Apraiz, A., & Eguiluz, L. (1996). El núcleo metamórfico de Valuengo (Zona de Ossa Morena, Macizo Ibérico): petrografía, termobarometría y evolución geodinámica. Revista de la Sociedad Geológica de España, 9(1–2), 29–49.

    Google Scholar 

  • Apraiz, A., & Eguiluz, L. (2002). Hercynian tectono-thermal evolution associated with crustal extension and exhumation of the Lora del Rio metamorphic core complex (Ossa-Morena zone, Iberian Massif, SW Spain). International Journal of Earth Sciences, 91(1), 76–92.

    Google Scholar 

  • Arenas, R., Díez-Fernández, R., Rubio-Pascual, F. J., Sánchez-Martínez, S., Martín-Parra, L. M., Matas, J., et al. (2016). The Galicia–Ossa-Morena zone: proposal for a new zone of the Iberian Massif. Variscan implications. Tectonophysics, 681, 135–143.

    Google Scholar 

  • Azer, M. K., Stern, R. J., & Kimura, J. (2010). Origin of a Late Neoproterozoic (605 ±13 Ma) intrusive carbonate-albitite complex in Southern Sinai, Egypt. International Journal of Earth Sciences, 99, 245–267.

    Google Scholar 

  • Bachiller, N. (1996). Las alteraciones hidrotermales de los leucogranitos del Complejo intrusivo de Burguillos del Cerro (Badajoz). Edad, geoquímica y modelo de procedencia y evolución de los fluidos. Master Thesis, Universidad Complutense de Madrid, Madrid, p. 151

  • Bachiller, N., Quílez, E., Casquet, C., & Galindo, C. (1996). Albititas metasomáticas y venas de cuarzo en los leucogranitos de Burguillos del Cerro (España). Modelo de evolución hidrotermal basado en el estudio de inclusiones fluidas. Geogaceta, 20, 1504–1506.

    Google Scholar 

  • Baeza, L., Ruiz, C., & Ruiz, M. (1978). Presencia de formaciones volcanosedimentarias y mineralizaciones de hierro asociadas en el eje magmático La Coronada-Villaviciosa (Córdoba). Boletín Geológico Minero, 89–5, 431–437.

    Google Scholar 

  • Bard, J., & Moine, B. (1979). Acebuches amphibolites in the Aracena hercynian metamorphic belt (southwest Spain): geochemical variations and basaltic affinities. Lithos, 12(4), 271–282.

    Google Scholar 

  • Barton, M. D. (1987). Lithophile element mineralization associated with Late Cretaceous two-mica granite in the Great Basin. Geology, 15, 337–340.

    Google Scholar 

  • Barton, M. D., & Johnson, D. A. (1996). An evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology, 24, 259–262.

    Google Scholar 

  • Barton, M. D., & Johnson, D. A. (2000). Alternative brine sources for Fe-Oxide (-Cu-Au) systems: Implications for hydrothermal alteration and metals. In: T. M. Porter (Ed.) Hydrothermal iron oxide coppergold and related deposits: a global perspective (pp. 43–60).

  • Bellido, F., Diez-Montes, A., & Sánchez-García, T. (2010). Caracterización geoquímica y estudio comparativo de plagiogranitos de las Zonas Surportuguesa y Ossa Morena (SO del Macizo Ibérico, España). Estudios Geologicos, 66.

  • Belousova, E. A. (2006). Zircon crystal morphology, trace element signatures and hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian Granitoids. Journal of Petrology, 47(2), 329–353.

    Google Scholar 

  • Breiter, K., Müller, A., Leichmann, J., & Gabasova, A. (2005). Textural and chemical evolution of a fractionated granitic system: the Podlesi stock, Czech Republic. Lithos, 80, 323–345.

    Google Scholar 

  • Brimhall, D. H., & Crerar, D. (1987). Ore fluids: magmatic to supergene. Reviews Mineralogy, 17, 235–321.

    Google Scholar 

  • Cambeses, A. (2015). Ossa-Morena Zone Variscan ‘calc-alkaline’ hybrid rocks: interaction of mantle- and crustal-derived magmas as a result of intra-orogenic extension-related intraplating. (Ph D), University of Granada.

  • Cambeses, A., Scarrow, J. H., Montero, P., Lázaro, C., & Bea, F. (2017). Palaeogeography and crustal evolution of the Ossa-Morena Zone, southwest Iberia, and the North Gondwana margin during the Cambro-Ordovician: a review of isotopic evidence. International Geology Review, 59(1), 94–130. https://doi.org/10.1080/00206814.2016.1219279.

    Article  Google Scholar 

  • Cambeses, A., Montero, P., Molina, J., Hyppolito, T., & Bea, F. (2019). Constraints of mantle and crustal sources and interaction during orogenesis: a zircon SHRIMP U-Th-Pb and O isotope study of the ‘calc-alkaline’Brovales pluton, Ossa-Morena Zone, Iberian Variscan Belt. Lithos, 324, 661–683.

    Google Scholar 

  • Carriedo, J., & Tornos, F. (2010). The iron oxide , copper–gold belt of the Ossa-Morena Zone, southwest Iberia: implications for IOCG genetic models. In: Porter T.M. (Ed.) Hydrothermal iron oxide copper–gold and related deposits: a global perspective, 4 (pp. 441–460).

  • Casquet, C., & Tornos, F. (1991). Influence of depth and igneous geochemistry on ore development in skarns: The Hercynian Belt of the Iberian Peninsula. Skarns, their petrology and metallogeny. Augustithis, Athens (pp. 555–591).

  • Casquet, C., Galindo, C., Tornos, F., & Velasco, F. (2001). The aguablanca Cu-Ni ore deposit (Extremadura, Spain), a case of synorogenic orthomagmatic mineralization: Isotope composition of magmas (Sr, Nd) and ore (S). Ore Geol Rev, 18, 237–250.

    Google Scholar 

  • Castorina, F., Masi, U., Padalino, G., & Paomba, M. (2006). Constraints from geochemistry and SR-Nd isotopes for the origin of albitite deposits from Central Sardinia (Italy). Mineralium Deposita, 41, 323–338.

    Google Scholar 

  • Charoy, B., & Pollard, P. J. (1989). Albite-rich silica-depleted metasomatic rocks at Emuford, northeast Queensland: Mineralogical, geochemical and fluid inclusion constraints on hydrothermal evolution and tin mineralization. Economic Geology, 84, 1850–1874.

    Google Scholar 

  • Chauris, L. (1985). Premiéres donnes géochemiques sur les albitites metasomatiques des invirons de Brest. Bull Soc Géol Fr., 8, 885–889.

    Google Scholar 

  • Chiaradia, M., Vallance, J., Fontboté, L., Stein, H., Schaltegger, U., Coder, J., et al. (2009). U-Pb, Re-Os, and 40Ar/39Ar geochronology of the Nambija Au-skarn and Pangui porphyry Cu deposits, Ecuador: implications for the Jurassic metallogenic belt of the Northern Andes. Mineralium Deposita, 44, 371–387. https://doi.org/10.1007/s00126-008-0210-6.

    Article  Google Scholar 

  • Chichorro, M., Pereira, M., Diaz-Azpiroz, M., Williams, I., Fernández, C., Pin, C., & Silva, J. B. (2008). Cambrian ensialic rift-related magmatism in the Ossa-Morena Zone (Évora–Aracena metamorphic belt, SW Iberian Massif): Sm–Nd isotopes and SHRIMP zircon U-Th–Pb geochronology. Tectonophysics, 461(1–4), 91–113.

    Google Scholar 

  • Corfu, F., Hanchar, J. M., Hoskin, P. W. O., & Kinny, P. (2003). Atlas of zircon textures. Reviews in Mineralogy and Geochemistry, 53, 469–500. https://doi.org/10.2113/0530469.

    Article  Google Scholar 

  • Corriveau, L. (2007). Iron Oxide Copper-Gold (Ag-Nb-P-REE-U) Deposits: a canadian perspective. Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, Special publication no, 5, 307–328.

  • Coullaut, J. L. (1979). Geología y metalogenia del criadero de San Guillermo Colmenar, Jerez de los Caballeros (pp. 1–20). Badajoz. Curso Rosso de Luna: IGME.

    Google Scholar 

  • Coullaut, J. L., Babiano, F., & Fernández, J. (1980). mineralizaciones de hierro del sureste de españa: Mina la Valera. Comunicaciones presentadas a las jornadas minerometalúrgicas.

  • Coullaut, J. L., Fernández, J., & Aguilar, M. J. (1981). Mapa y memoria explicativa de la hoja 1:50.000 .Nº 875 (Jerez de los Caballeros) del Mapa GeológicoNacional (MAGNA). Madrid: Instituto Geológico y MInero de España (IGME).

  • Crerar, D., Wood, S., & Brantley, S. (1985). Chemical controls on solubility of ore forming minerals in hydrothermal solutions. Canadian Mineralogist, 23, 333–352.

    Google Scholar 

  • Cuervo, S., Tornos, F., Spiro, B., & Casquet, C. (1996). El origen de los fluidos hidrotermales en el Skarn férrico de Colmenar-Santa Barbara (Zona de Ossa Morena). Geogaceta, 20, 1499–1500.

    Google Scholar 

  • Dallmeyer, R. D., & Quesada, C. (1992). Cadomian vs. Variscan evolution of the Ossa-Morena zone (SW Iberia: field and 40Ar/39Ar mineral age constraints. Tectonophysics, 216, 339–364.

    Google Scholar 

  • Darbyshire, D. P. F., Tornos, F., Galindo, C., & Casquet, C. (1998). Sm-Nd and Rb-Sr constraints on the age and origin of magnetite mineralization in the Jerez de los Caballeros iron district of Extremadura, SW Spain. Chinese Science Bulletin, 43, 28.

    Google Scholar 

  • Davidson, G. J. (1994). Hostrocks to stratabound iron-formation-hosted Starra gold–copper deposit, Australia I. Sodic lithologies. Mineralium Deposita, 29(3), 237–249.

    Google Scholar 

  • De Jonh, G., & Williams, P. J. (1995). Giant metasomatic system formed during exhumation of mid crustal Proterozoic rocks in the vicinity of the Cloncurry fault, NW Queesland. Australian Journal of Earth Sciencies, 42, 281–290.

    Google Scholar 

  • De Jong, G., Rotherham, J., Phillips, G. N., & Williams, P. J. (1998). Mobility of rare-earth elements and copper during shear-zone related retrograde metamorphism. Geologie en Mijnbouw, 76, 311–319.

    Google Scholar 

  • Diaz Azpiroz, M. D., Castro, A., Fernández, C., López, S., Caliani, J. F., & Moreno-Ventas, I. (2004). The contact between the Ossa Morena and the South Portuguese zones. Characteristics and significance of the Aracena metamorphic belt, in its central sector between Aroche and Aracena (Huelva). Journal of Iberian Geology, 30, 23–51.

    Google Scholar 

  • Díaz Azpiroz, M., Fernández, C., Castro, A., & El‐Biad, M. (2006). Tectonometamorphic evolution of the Aracena metamorphic belt (SW Spain) resulting from ridge‐trench interaction during Variscan plate convergence. Tectonics 25(1).

  • Dilles, J. H., Einaudi, M. T., Proffett, J. M., & Barton, M. D. (2000). Overview of the Yerington porphyry copper district: Magmatic to nonmagmatic sources of hydrothermal fluids, their flow paths, alteration affects on rocks, and Cu-Mo-Fe-Au ores. Society of Economic Geologists Guide book Series, 32, 55–66.

    Google Scholar 

  • Doetsch, J. (1967). La investigación de Magnetitas y los sondeos comprobatorios en el Suroeste de España. Notas y comprobaciones del IGME, 97, 41–106.

    Google Scholar 

  • Duncan, R. J., Hitzman, M. W., Nelson, E. P., & Togtokhbayar, O. (2014). Structural and Lithological Controls on Iron Oxide Copper-Gold Deposits of the Southern Selwyn-Mount Dore Corridor, Eastern Fold Belt, Queensland, Australia. Economic Geology, 109, 419–456.

    Google Scholar 

  • Dupont, R. (1979). Cadre geologique et metallogenese des gisements de fer du sud de la province de Badajoz (Sierra Morena Occidentale-Spagne). PhD Thesis, Inst. Nat. Polyt. Lorraine, 371.

  • Edfelt, A., Armstrong, M., Smith, M., & Martinsson, O. (2005). Alteration paragenesis and mineral chemistry of the Tjarrojakka apatite-iron and Cu (-Au) ocurrences, Kiruna area, northern Sweden. Mineralium Deposita, 40, 409–434.

    Google Scholar 

  • Eguiluz, L. (1987). Petrogénesis de rocas ígneas y metamórficas en el Anticlinorio Burguillos-Monesterio. Macizo Ibérico Meridional: Universidad del Pais Vasco, Bilbao.

    Google Scholar 

  • Eguiluz, L., Fernández, J., Coullaut, J. L., & Garrote, A. (1983). Mapa y memoria explicativa de la Hoja 1:50:000, No 897 (Monesterio) del Mapa Geológico Nacional (MAGNA). Madrid: Instituto Geológico y MInero de España (IGME).

    Google Scholar 

  • Eguiluz, L., Ábalos, B., Apraiz, A., & Martínez, L. M. (1992). El núcleo de Valuengo: correlación e implicaciones en la interpretación geodinámica de la Zona de Ossa Morena. Publicaciones del Museo Geológico de Extremadura, 1, 67.

    Google Scholar 

  • Eguiluz, L., Ordoñez, B., Ibarguchi, J. I. G., Apraiz, A., & Ábalos, B. (1999). Superposición de ciclos orogénicos: el ejemplo de la Zona de Ossa-Morena (Macizo Ibérico). Trabajos de Geología, 21, 79–96.

    Google Scholar 

  • Eguiluz, L., Gil-Ibarguchi, J. I., Ábalos, B., & Apraiz, A. (2000). Superposed Hercynian and Cadomian orogenic cycles in the Ossa-Morena zone and related areas of the Iberian Massif. GSA Bulletin, 112(9), 1398–1413.

    Google Scholar 

  • Eguiluz, L., Carracedo, S. M., Sarrionandia, E. F., & Apalategui, O. (2004). Nuevos datos tectono-estructurales del Macizo de Brovales (Antiforma de Olivenza-Monesterio): relación con el cabalgamiento de Monesterio. Geogaceta, 35, 83–86.

    Google Scholar 

  • Einaudi, M. T., Meinert, L. D., & Newberry, R. J. (1981). Skarn deposits. Economic Geology, 75, 317–391.

    Google Scholar 

  • Etxebarria, M., Chalot-Prat, F., Apraiz, A., & Eguiluz, L. (2006). Birth of a volcanic passive margin in Cambrian time: Rift paleogeography of the Ossa-Morena Zone, SW Spain. Precambrian Research, 147, 366–386.

    Google Scholar 

  • Expósito, I. (2000). Evolución estructural de la mitad septentrional de la Zona de Ossa Morena y su relación con el límite Zona de Ossa Morena/Zona Centroibérica. Universidad de Granada, 295.

  • Expósito, I., Simancas, J. F., Gonzalez-Lodeiro, F., Bea, F., Montero, P., & Salman, K. (2003). Metamorphic and deformational imprint of Cambrian-Lower Ordovician rifting in the Ossa-Morena Zone (Iberian Massif, Spain). Journal of Structural Geology, 25(12), 2077–2087.

    Google Scholar 

  • Febrel, T. (1970). Metalogenia de la Hoja núm 875, Jerez de los Caballeros (Badajoz). Boletín Geológico Minero, 81, 472–492.

    Google Scholar 

  • Fernández, J., Coullaut, J. L., & Aguilar, M. J. (1981). Geologic map of Jerez de los Caballeros, hoja 875. Geologic map of Spain, IGME, scale, 1, 50000.

    Google Scholar 

  • Fernández, J., Gutiérrez-Alonso, G., & Jeffries, T. E. (2002). The importance of along-margin terrane transport in northern Gondwana: insights from detrital zircon parentage in Neoproterozoic rocks from Iberia and Brittany. Earth and Planetary Science Letters, 204, 75–88.

    Google Scholar 

  • Floyd, P. A., Yaliniz, M. K., & Goncuoglu, M. C. (1998). Geochemistry and petrogenesis of intrusive and extrusive ophiolitic plagiogranites, Central Anatolian Crystalline Complex, Turkey. Lithos, 42, 225–241.

    Google Scholar 

  • Galindo, C., Casquet, C., Darbyshire, D. P. F., Tornos, F., & Cuevo, S. (1995). Sm-Nd isotope geochemistry and dating of magnetites: A case study from an Fe district in the SW of Spain. Pasava, Kribek, and Zak, eds., Mineral deposits: Rotterdam, Balkema, pp. 41–43.

  • Groves, D. I., Bierlein, F. P., Meinert, L. D., & Hitzman, M. W. (2010). Iron Oxide Copper-Gold (IOCG) Deposits through Earth History: Implications for Origin, Lithospheric Setting, and Distinction from Other Epigenetic Iron Oxide Deposits. Economic Geology, 105, 641–654.

    Google Scholar 

  • Hauck, S. A. (1990). Petrogenesis and tectonic setting of middle Proterozoic iron oxide-rich ore deposits; an ore deposit model for Olympic Dam-type mineralization. U.S Geological Survey Bulletin, 1931, 4–39.

    Google Scholar 

  • Haynes, D. W. (2000). Iron oxide copper (-gold) Deposits: Their position in the ore deposit spectrum and modes of origin (pp. 71–90). A Global Perspective: Porter T.M. Hydrothermal Iron Oxide Copper- Gold and Related Deposits.

    Google Scholar 

  • Haynes, D. W., Cross, K. C., Bills, R. T., & Reed, M. H. (1995). Olympic Dam ore genesis: a fluid mixing model. Economic Geology, 90, 281–307.

    Google Scholar 

  • Hitzman, M. W. (2000). Iron Oxide-Cu-Au Deposits: What, Where (pp. 9–25). A Global Perspective: When and Why. Hydrothermal Iron Oxide Copper-Gold & Related Deposits.

  • Hitzman, M. W., Oreskes, N., & Einaudi, M. T. (1992). Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Research, 58, 241–287.

    Google Scholar 

  • IGME. (1979). Investigación de Magnetita en el área de la Berrona (p. 10608). Ministerio de Industria-Dirección General de Minas: IGME.

    Google Scholar 

  • IGME. (2006). Mapa metalogenético de la provincia de Badajoz. Escala, 1(200000), 192.

    Google Scholar 

  • Jacobsen, S. B., & Wasserburg, G. J. (1980). Sm-Nd isotopic evolution of chondrites. Earth and Planetary Science Letters, 50, 139–155.

    Google Scholar 

  • Julivert, M., Fontboté, J. M., Ribeiro, A., & Conde, L. A. (1974). Mapa tectónico de la Peninsula Ibérica y Baleares E: 1:1.000.000 y memoria explicativa. Publicaciones del IGME, p. 113.

  • Kober, B. (1986). Whole-grain evaporation for 207Pb/206Pb age investigations on single zircons using a duble-filament thermal ion source. Contributions to Mineralogy and Petrology, 93, 482–490.

    Google Scholar 

  • Kober, B. (1987). Single-zircon evaporation combined with Pb + emitter-bedding for 207Pb/206Pb age investigations usin thermal ion mass spectrometry and implications to zirconlology. Contributions to Mineralogy and Petrology, 94, 63–71.

    Google Scholar 

  • Koepke, J., Feig, S., Snow, J., & Freise, M. (2004). Petrogenesis of oceanic plagiogranites by partial melting of gabbros: an experimental study. Contributions to Mineralogy and Petrology, 146, 414–432.

    Google Scholar 

  • Kovalenko, N. I. (1978). The genesis of rare metal granitoids and related ore deposits. Metallization associated with acid magmatism., pp. 235–247.

  • Lagache, M., & Weisbrod, A. (1977). The system: two alkali feldspars KCl-NaCl-H2O at moderate to high temperatures and low pressures. Contributions to Mineralogy and Petrology, 62, 77–101.

    Google Scholar 

  • Locutura, J., Tornos, F., Florido, P., & Baeza, L. (1990). Ossa Morena Zone: Metallogeny (pp. 321–330). In E. Martinez, & R.D. Dallmeyer (Eds.) Pre-Mesozoic Geology of Iberia, Springer Verlag.

  • London, D. (1992). The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Canadian Mineralogist, 30, 499–540.

    Google Scholar 

  • López-Guijarro, R., Armendáriz, M., Quesada, C., Fernández-Suárez, J., Murphy, B. J., Pin, C., et al. (2008). Ediacaran-Palaeozoic tectonic evolution of the Ossa Morena and Central Iberian zones (SW Iberia) as revealed by Sm–Nd isotope systematics. Tectonophysics, 461(1–4), 202–214.

    Google Scholar 

  • López-Munguira, A., & Nieto, F. (2004). Low-grade metamorphism in the central sector of the Ossa-Morena zone. Journal of Iberian Geology, 30, 109–118.

    Google Scholar 

  • Mark, G., & Oliver, N. H. S. (2006). Mineralogical and chemical evolution of the Ernest Henry Fe oxide–Cu–Au ore system, Cloncurry district, northwest Queensland, Australia. Mineralium Deposita, 40, 769–801.

    Google Scholar 

  • Martinez, F. J. (1974). Estudio petrológico de la parte occidental de la provincia de Salamanca. Trabajos de geología. Universidad de Oviedo, 7, 3–59.

    Google Scholar 

  • Mehner, K. R. (1968). Migmatites and the origin of granitic rocks. Amsterdam, 391.

  • Moita, P., Santos, J. F., & Pereira, M. F. (2009). Layered granitoids: interaction between continental crust recycling processes and mantle-derived magmatism: examples from the Évora Massif (Ossa–Morena Zone, Southwest Iberia, Portugal). Lithos, 111(3–4), 125–141.

    Google Scholar 

  • Montero, P., Salman, K., Bea, F., Azor, A., Expósito, I., & Lodeiro, F., et al. (2000). New data on the geochronology of the Ossa-Morena Zone, Iberian Massif. Variscan-Appalachian dynamics: The building of the Upper Palaeozoic basement.

  • Mustard, R., Baker, T., Williams, P. W., Ulrich, T., Mernagh, L. J., & Ryan, C. G. (2003). Cu-rich brines at the Osborne and Starra deposits: implications for immiscibility in Fe-oxide Cu–Au systems. Transactions Institution Mining Metallurgy, B112, 189–191.

    Google Scholar 

  • Nesen, G. (1981). Le Modèle exogranite-endogranite à stcokscheider et la métallogénie Sn-W. Etude des gisements de Fontao et Santa Comba (Galice-Espagne): Spécialité Université Nancy.

    Google Scholar 

  • Niiranen, T., Poutiainen, M., & Mänttári, I. (2007). Geology, geochemistry, fluid inclusion characteristics, and U-Pb age studies on iron oxide–Cu–Au deposits in the Kolari region, northern Finland. Ore Geology Reviews, 30, 75–105.

    Google Scholar 

  • Ohmoto, H. (1986). Stable isotope geochemistry of ore deposits. Reviews in Mineralogy, 16, 491–560.

    Google Scholar 

  • Oliver, N. H. S., Cleverly, J. S., Mark, G., Pollard, P. J., Fu, B., Marshall, L. J., et al. (2004). Modeling the role of sodic alteration in the genesis of iron oxide–cooper–gold deposits, Eastern Mount Isa Block, Australia. Economic Geology, 99, 1145–1176.

    Google Scholar 

  • Ordóñez, B. (1998). Geochronological studies of the Pre-Mesozoic basement of the Iberian Massif : the Ossa Morena zone and the Allochthonous Complexes within the Central Iberian zone (p. 235). Zurich: Tesis Doctoral University.

    Google Scholar 

  • Orville, P. M. (1963). Alkali ion exchange between vapor and feldspar phases. American Journal of Science, 261, 201–237.

    Google Scholar 

  • Pankhurst, R. J., & O´nions, R. K. . (1973). Determination of Rb/Sr and 87Sr86Sr ratios of some standard rocks and evaluation of X-ray fluorescence spectrometry in Rb-Sr geochemistry. Chemical Geology, 12(2), 127–136. https://doi.org/10.1016/0009-2541(73)90110-1.

    Article  Google Scholar 

  • Pereira, M. F., Chichorro, M., Williams, I. S., Silva, J. B., Fernández, C., Díaz Azpiroz, M., & Castro, A. (2009). Variscan intra-orogenic extensional tectonics in the Ossa-Morena Zone (Évora-Aracena-Lora del Río metamorphic belt, SW Iberian Massif): SHRIMP zircon U-Th-Pb geochronology. Geological Society, 327, 215–237.

    Google Scholar 

  • Pereira, M. F., Chichorro, M., Sola, A. R., Silva, J. B., Sanchez-Garcia, T., & Bellido, F. (2011). Tracing the Cadomian magmatism with detrital/inherited zircon ages by in-situ U-Pb SHRIMP geochronology (Ossa-Morena Zone, SW Iberian Massif). Lithos, 123(1–4), 204–217. https://doi.org/10.1016/j.lithos.2010.11.008.

    Article  Google Scholar 

  • Pereira, M. F., Chichorro, M., Silva, J. B., Ordóñez Casado, B., Lee, J. K. W., & Williams, I. S. (2012). Early carboniferous wrenching, exhumation of high-grade metamorphic rocks and basin instability in SW Iberia: Constraints derived from structural geology and U-Pb and 40Ar-39Ar geochronology. Tectonophysics, 558–559, 28–44.

    Google Scholar 

  • Perejon, A., & Moreno-Eiris, E. (1992). Palozoico Inferior de Ossa Morena. In: J.C. Gutierrez Marco, J. Saavedra y I. Rábano (Eds.) Paleozoico inferior de Ibero-América (pp. 557–565). Spain: Universidad de Extremadura

  • Pin, C., Fonseca, P. E., Paquette, J. L., Castro, P., & Matte, P. (2008). The ca. 350 Ma beja igneous complex: a record of transcurrent slab break-off in the Southern Iberia Variscan Belt? Tectonophysics, 461, 356–377.

    Google Scholar 

  • Pollard, P. J. (2001). Sodic (-calcic) alteration in Fe-oxide-Cu-Au districts: an origin via unmixing of magmatic fluids. Mineralium Deposita, 36, 93–100.

    Google Scholar 

  • Pollard, P. J. (2006). An intrusion-related origin for Cu-Au mineralization in iron-oxide-copper-gold (IOCG) provinces. Mineralium Deposita, 41, 179–187.

    Google Scholar 

  • Pupin, J. P. (1980). Zircon and granite petrology. Contributions to Mineralogy and Petrology, 73, 207–220.

    Google Scholar 

  • Quesada, C. (1992). Evolución Tectónica del Macizo Ibérico (Una historia de crecimiento por acrecencia sucesiva de terrenos durante el Proterozoico superior y el Paleozoico, Paleozoico Inferior de Ibero América.

  • Quesada , C., & Sánchez-García, T. (2002). Cartografia geológica continua de la Zona de Ossa Morena, Escala 1:50.000. Madrid: Instituto Geológico y MInero de España (IGME).

  • Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L., & DePaolo, D. J. (1998). Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology, 145(1–2), 117–152. https://doi.org/10.1016/S0009-2541(97)00159-9.

    Article  Google Scholar 

  • Richards, J. P., & Mumin, A. H. (2013). Magmatic-hydrothermal processes within an evolving Earth: iron oxide–copper–gold and porphyry Cu–Mo–Au deposits. Geology, 41, 767–770.

    Google Scholar 

  • Robardet, M. (2003). The Armorica microplate: fact or fiction? Critical review of the conncept and contradictory palaeobiogeographical data. Paleogeography Paleoclimatology Paleoecology, 195, 125–148.

    Google Scholar 

  • Roberts, D. E., & Hudson, G. R. T. (1983). The Olympic Dam copper–uranium–gold–silver deposit, Roxby Downs, South Australia. Economic Geology, 78, 799–822.

    Google Scholar 

  • Rotherham, J. F. (1997). A metasomatic origin for the iron oxide Au-Cu Starra orebodies, Eastern Fold Belt. Mount Isa Inlier. Mineralium Deposita, 32(3), 205–218.

    Google Scholar 

  • Ruiz García, C. (1975). Génesis de los depósitos de hierro del Suroeste de la provincia de Badajoz. Tesis, 227.

  • San José, M. A., Herranz, P., & Pieren, A. P. (2004). A review of the Ossa-Morena Zone and its limits. Implications for the definition of the Lusitan-Marianic Zone. Journal of Iberian Geology, 30, 7–22.

    Google Scholar 

  • Sanabria, R., Casquet, C., Tornos, F., & Galindo, C. (2005). Las mineralizaciones ferríferas del coto minero San Guillermo (Jerez de los Caballeros, Badajoz, España). Geogaceta, 38, 223–226.

    Google Scholar 

  • Sánchez-García, T., Bellido, F., & Quesada, C. (2003). Geodinamic setting and geochemical signatures of Cambrian-Ordovician rift-related igneous rocks (Ossa-Morena Zone, SW Iberia). Tectonophysics, 365, 233–255.

    Google Scholar 

  • Sánchez-García, T., Quesada, C., Bellido, F., Dunning, G. R., & González del Tánago, J. (2008). Two-step magma flooding of the upper crust during rifting: The Early Paleozoic of the Ossa Morena Zone (SW Iberia). Tectonophysics, 461(1–4), 72–90.

    Google Scholar 

  • Sánchez-García, T., Bellido, F., Pereira, M. F., Chichorro, M., Quesada, C., Pin, C., et al. (2010). Rift-related volcanism predating the birth of the Rheic Ocean (Ossa-Morena zone, SW Iberia). Gondwana Research, 17, 392–407.

    Google Scholar 

  • Schmid, R., Fettes, D., Harte, B., Davis, E., & Desmons, J. (2007). A systematic nomenclature for metamorphic rocks. Recomendations by the IUGS Subcommision on the systematics of metamorphic rocks.

  • Schwartz, M. O. (1992). Geochemical criteria for distinguishing magmatic and metasomatic albite-enrichment in granitoids—examples from the Ta-Li granite Yichun (China) and the Sn-W deposit Tikus (Indonesia). Mineralium Deposita, 27(2), 101–108.

    Google Scholar 

  • Shannon, J. R., Walker, B. M., Carten, R. B., & Geraghty, E. P. (1982). Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson Mine, Colorado. Geology, 10, 293–297.

    Google Scholar 

  • Sillitoe, R. H. (2003). Iron oxide-copper-gold deposits: an Andean view. Mineralium Deposita, 38, 787–812.

    Google Scholar 

  • Silva, J. B., Oliveira, J. T., & Ribeiro, A. (1990). Structural outline of the South Portuguese Zone. Martínez, E.,Dallmeyer, R.D. Pre-Mesozoic Geology of Iberia (pp. 348–362). Berlín: Springer.

  • Simancas, J. F., Carbonell, R., Gonzalez-Lodeiro, F., Perez Estaun, A., Juhlin, C., Ayarza, P., et al. (2003). Crustal structure of the transpressional Variscan orogen of SW Iberia: Sw Iberia deep seismic reflection profile (IBERSEIS). Tectonics, 22, 1063–1078.

    Google Scholar 

  • Spencer, K. J., Hacker, B. R., Kylander-Clark, A. R. C., Andersen, T. B., Cottle, J. M., Stearns, M. A., et al. (2013). Campaign-style titanite U-Pb dating by laser-ablation ICP: implications for crustal flow, phase transformations and titanite closure. Chemical Geology, 341, 84–101.

    Google Scholar 

  • Stacey, J. S., & Kramers, J. D. (1975). Approximation of terrestrial lead isotope evolution by a 2-stage model. Earth Planet Sci Lett, 26(2), 207–221.

    Google Scholar 

  • Staudacher, T., Jessberger, E. K., Dorflinger, D., & Kiko, J. (1978). A refined ultrahigh-vacuum furnace for rare gas analysis. Journal of Physics E. https://doi.org/10.1088/0022-3735/11/8/019.

    Article  Google Scholar 

  • Steiger, R. H., & Jäger, E. (1997). Subcomission on geochronology: convention on the use of decay constant in geo and cosmochronology. Earth and Planetary Science Letters, 36, 359–362.

    Google Scholar 

  • Stern, R. A. (1997). The GSC Sensitive High Resolution Ion Microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. Radiogenic Age and Isotopic Studies, Report 10, Geological Survey of Canada, pp. 1–31.

  • Stern, R. A., & Amelin, Y. (2003). Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chemical Geology, 197, 11–146.

    Google Scholar 

  • Tallarico, F. H. B., Figueiredo, B. R., Groves, D. I., Kositcin, N., McNaughton, J., Fletcher, I. R., et al. (2005). Geology and SHRIMP U-Pb Geochronology of the Igarapé Bahia Deposit, Carajás Copper–Gold Belt, Brazil: An Archean (2.57 Ga) Example of Iron-Oxide Cu–Au-(U-REE) Mineralization. Economic Geology, 100, 7–28.

    Google Scholar 

  • Tomé, C. (2012). Fluid and Melt inclusion study of magmatic-hydrothermal mineralization in the Ossa Morena Zone (SW Spain) (p. 251). Tesis Doctoral: Universidad de Huelva.

    Google Scholar 

  • Tornos, F. (1989). Los skarns y mineralizaciones asociadas del Sistema Central Español: modelo de caracterización petrológica, geoquímica y metalogénica. Tesis Doctoral: Universidad Complutense de Madrid.

    Google Scholar 

  • Tornos, F., & Carriedo, J. (2006). La relación de los depósitos de tipo IOCG con intrusiones laminares profundas: el SO de la Península Ibérica. Actas del XIII Congreso Peruano de Geología, pp. 796–799.

  • Tornos, F., & Casquet, C. (2005). A new scenario for related IOCG and Ni-(Cu) mineralization: the relationship with giant mid-crustal mafic sills, Variscan Iberian Massif. Terra Nova, 17(3), 236–241.

    Google Scholar 

  • Tornos, F., Casquet, C., Relvas, J. M. R. S., Barriga, F. J. A. S., & Saez, R. (2002). The relationship between ore deposits and oblique tectonics: the SW Iberian Variscan Belt. The timing and location of major ore deposits in an evolving orogen. Geological Society of London, 204, 179–198.

    Google Scholar 

  • Tornos, F., Casquet, C., & Galindo, C. (2003). Hydrothermal iron oxide (-Cu-Au) mineralization in SW Iberia: Evidence for amultiple origin. In Proceedings of seventh Biennial SGA Meeting "Mineral Exploration and Sustainable Development", Athens (pp. 395–398).

  • Tornos, F., Inverno, C. M. C., Casquet, C., Mateus, A., Ortiz, G., & Oliveira, V. (2004). The metallogenic evolution of the Ossa-Morena Zone. Journal of Iberian Geology, 30, 143–181.

    Google Scholar 

  • Tornos, F., Velasco, F., Barra, F., & Morata, D. (2010). The Tropezón Cu–Mo–(Au) deposit, Northern Chile: the missing link between IOCG and porphyry copper systems? Mineralium Deposita, 45, 313–321.

    Google Scholar 

  • Ulrich, T., & Henrich, C. A. (2002). Geology and alteration gechemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera, Argentina. Economic Geology, 96, 1865–1888.

    Google Scholar 

  • Vance, J. A. (1961). Polysynthetic twinning in plagioclase. The American Mineralogist, 46, 1097–1119.

    Google Scholar 

  • Vázquez, F., & Fernández, F. (1976). Contribución al conocimiento geológico del Suroeste de España en relación con la prospección de depósitos de magnetitas. Memoria del Instituto Geológico y Minero de España, 89, 130.

    Google Scholar 

  • Vázquez, F., Arteaga, R., & Schemerhorn, J. J. (1980). Depósitos minerales del SO de la Península Ibérica. Boletín Geológico Minero, 91–2, 293–342.

    Google Scholar 

  • Wendt, I., & Carl, C. (1991). The statistical distribution of the mean squared weighted deviation. Chemical Geology, 86(4), 275–285. https://doi.org/10.1016/0168-9622(91)90010-T.

    Article  Google Scholar 

  • Williams, P. J. (1994). Iron mobility during synmetamorphic alteration in the Selwyn Range area, NW Queesland: Implications for the origin of ironstone-hosted Au-Cu deposits. Mineralium Deposita, 29, 250–260.

    Google Scholar 

  • Williams, P. J., Dong, G., Ryan, C. G., Pollard, P. J., Rotherham, J. F., Mernagh, T. P., et al. (2001). Geochemistry of hypersaline fluid inclusions from the Starra Au-Cu deposit, Cloncurry district, Queensland. Economic Geology, 96, 875–883.

    Google Scholar 

  • Williams, P. J., Barton, D. M., Johnson, D. A., Fontboté, L., De Haller, A., Mark, G., et al. (2005). Iron oxide copper–gold deposits: geology, space–time distribution, and possible modes of origin. Economic Geology, 100, 371–405.

    Google Scholar 

  • Woolley, A. R. (1982). A discussion of carbonatite evolution and nomenclature, and generation of sodic and potassic fenites. Mineralogical Magazine, 46, 13–17.

    Google Scholar 

Download references

Acknowledgements

This paper is a tribute to Dr Carmen Galindo, who passed away in 2019. This work was supported by project RTI2018-099157-A-I00 and grant programs from the Spanish Geological Survey (IGME), the Society of Economic Geologists (SEG) and Swiss funds (FNSNF). Would like to thank Cesar Casquet, Francisco Velasco, Cristina Tome, Christopher Heinrich and Cecilio Quesada for the fruitful discussions at the field. We acknowledge the support from Luis Fontbote, Urs Schaltegger, Richard Spikings, Maria Ovtcharova & Kalin Kouzmanov during the analytical stage at the Earth Science Department at Geneva´s Universtity, and Nycole Rayner for her shared experiences during SHRIMP analysis at Canadian Geological Survey in Ottawa. Thanks for Jose Manuel Fuenlabrada for his expertise at the analytical stage at the Geochronology Unit from Complutense University of Madrid. Finally, we thank to Aitor Cambeses, and Antonio Castro for their review and suggestions for the improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Carriedo.

Additional information

Carmen Galindo: Deceased.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carriedo, J., Tornos, F., Chiaradia, M. et al. A genetic link between albitic magmas and IOCG mineralization in the Ossa Morena Zone (SW Iberia). J Iber Geol 47, 85–119 (2021). https://doi.org/10.1007/s41513-021-00162-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-021-00162-3

Keywords

Palabras clave

Navigation