Skip to main content
Log in

Short-term seismicity patterns along the most active faults in Iran

  • Research Paper
  • Published:
Journal of Iberian Geology Aims and scope Submit manuscript

Abstract

In this study, six seismically active fault systems located in different tectonic regimes have been surveyed. The data were from three Persian seismotectonic provinces (Alborz-Azarbaijan, Zagros and East-Central Iran) with different seismic properties, covering a time span of 8 years. The earthquake (Eq.) data have been recorded by the seismological network of the Institute of Geophysics of the University of Tehran, Iran (IGUT), the International Institute of Earthquake Engineering and Seismology of Iran (IIEES), and also include the early large instrumental earthquakes in the Engdahl catalog. During this period, few months of seismic quiescence occurred on the entire length of both Dasht-e Bayaz (DB) and Abiz faults, while most of the moderate and large earthquakes occurred after few months of lack of seismicity on the Main Recent fault, DB, Golbaf and Kazeroun faults. Moreover, single and triple migration patterns of seismicity were regularly seen along Golbaf fault and North Tabriz fault (NTF), respectively. Some large earthquakes (the 2011, MN 5.2 Eq. of Golbaf F. and the 2008, MN 5.2 Eq. of NTF) occurred at the end of these seismicity migration patterns. Along NTF, a diffuse seismicity with no specific seismic pattern has been distinguished. In all the case studies and during the investigated time period the entire lengths of the fault systems were not active at the same time. Finally, there is not a clear relationship between the duration of the seismic gaps and the magnitude of large earthquakes with different co-seismic rupture lengths in depth.

Resumen

En el presente trabajo se estudian seis sistemas de fallas activas sísmicamente localizados en diferentes contextos tectónicos. Los datos han sido obtenidos de tres provincias sismotectónicas persas (Alborz-Azarbaijan, Zagros y Centro-Este de Iran) con diferentes propiedades sísmicas y seguidos durante 8 años. Los datos de terremotos (Eq) han sido registrados mediante una red sismológica en el Instituto de Geofísica de la Universidad de Teheran, Irán (IGUT), el Instituto Internacional de Ingeniería y Sismología de Irán (IIEES), incluyendo también una gran cantidad de datos obtenidos del catálogo Engdahl. Durante este periodo hubo pocos meses de estabilidad a lo largo de las fallas de Dasht-e Bayaz (DB) y Abiz, mientras que la mayoría de los terremotos moderados y de importancia aparecieron después de uno pocos meses de ausencia de sismicidad en las fallas recientes más importantes (DB) Golbaf y Kazeroum. Las tendencias de migración individual y triple fueron comúnmente las más observadas a lo largo de las fallas de Golbaf y del Norte de Tabriz (NTF) respectivamente. Algunos terremotos de gran intensidad (el de 2011, MN 5.2 Eq. of Golbaf F., y el de 2008, MN 5.2 Eq. of NTF) sucedieron al final de estas tendencias de migración sísmicas. Se ha distinguido una sismicidad difusa, sin una tendencia clara, a lo largo de NTF. Las fallas no fueron activas al mismo en los diferentes puntos de estudio durante el periodo de observación. Finalmente, no hay una relación clara entre la duración de los periodos de ausencia de sismicidad y la magnitud de los principales terremotos que tienen diferente ruptura de co-sismicidad en longitud y profundidad.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

adopted from the active fault map of Iran (Hessami et al. 2003a). b Focal mechanism of large Iranian earthquakes (GCMT, 2019)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

adapted from local networks (see the text) and IGUT catalog. The background image map indicates intensity of the historical earthquakes. Color of rectangles shows maximum intensity in each area in accordance to the intensity bar of the map

Similar content being viewed by others

References

  • Allen, M. B., Ghassemi, M. R., Shahrabi, M., & Qorashi, M. (2003). Accommodation of late Cenozoic oblique shortening in the Alborz range, Iran. Journal of Structural Geology, 25, 659–672.

    Google Scholar 

  • Ambraseys, N., & Melville, C. (1982). A History of Persian Earthquakes (p. 107). Cambridge: Cambridge University Press.

    Google Scholar 

  • Ambraseys, N., & Tchalenko, J. S. (1969). The Dasht-e-Bayas (Iran) earthquake of August 31, 1968: A field report. Bulletin of the Seismological Society of America, 59, 1751–1792.

    Google Scholar 

  • Basiri, M., Nazari, H., Foroutan, M., Solaymani, A. S., Shokri, M. A., Talebian, M., et al. (2013). Determination of clustering pattern of paleoearthquakes occurrences on the Golbaf Fault, SE Kerman. Scientific Quarterly Journal of Geosciences, 22(87), 171–180.

    Google Scholar 

  • Berberian M. (1976). Contribution to the seismotectonics of Iran. Part II. Geological Survey of Iran (GSI), Report No. 39.

  • Berberian, M. (1995). Master blind thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonic. Tectonophysics, 241, 193–224.

    Google Scholar 

  • Berberian, M. (2005). The 2003 Bam urban earthquake: A predictable seismotectonic pattern along the western margin of the rigid Lut block, southeast Iran. Earthquake Spectra, 21(1), 35–99.

    Google Scholar 

  • Berberian, M., Jackson, J. A., Qorashi, M., Khatib, M. M., Priestley, K., Talebian, M., et al. (1999). The 1997 May 10 Zirkuh (Qa’enat) earthquake (M 7.2): Faulting along the Sistan suture zone of East-Central Iran. Geophysical Journal International, 136, 671–694.

    Google Scholar 

  • Berberian, M., Qorashi, M., Jackson, J. A., Fielding, E., Parsons, B. E., Priestley, K., et al. (2001). The 1998 March 14 Fandoqa earthquake M=6.6 in Kerman, southeast Iran: Re-rupture of the 1981 Sirch earthquake fault, triggering of slip on adjacent thrusts, and the active tectonics of the Gowk fault zone. Geophysical Journal International, 146(2), 371–398.

    Google Scholar 

  • Berberian, M., Qorashi, M., Jackson, J., Priestley, K., & Wallace, T. (1992). The Roudbar-Tarom earthquake of 20 June 1990 in NW Persia: Preliminary field and seismological observations, and its Tectonic significance. Bulletin of the Seismological Society of America, 82(4), 1726–1755.

    Google Scholar 

  • Berberian, M., & Yeats, R. S. (1999). Patterns of historical earthquake ruptures in the Iranian Plateau. Bulletin of the Seismological Society of America, 89, 120–139.

    Google Scholar 

  • Bergman, E. A., & Solomon, S. C. (1990). Earthquake swarms on the Mid-Atlantic Ridge: Products of magmatism or extensional tectonics? Journal of Geophysical Research, 95, 4943–4965.

    Google Scholar 

  • Campos, J., Hatzfeld, D., Madariaga, R., Lopez, G., Kausel, E., Zollo, A., et al. (2002). A seismological study of the 1835 seismic gap in south-central Chile. Physics of the Earth and Planetary Interiors, 132, 177–195.

    Google Scholar 

  • Copley, A., Faridi, M., Jackson, J., Nazari, H., Ghorashi, M., Oveisi, B., et al. (2013). The 2012, August 11 Ahar earthquakes: Consequences for tectonics and earthquake hazard in the Turkish-Iranian Plateau. Geophysical Journal International, 196, 15–21.

    Google Scholar 

  • Ellsworth, W. L., Lindh, A. G., Prescott, W. H., & Herd, D. G. (1981). The 1906 San Francisco earthquake and the seismic cycle. In Earthquake prediction. An international review (pp. 223–246). Washington D.C.: American Geophysical Union.

  • Engdahl, E. R., Jackson, J. A., Myers, S. C., Bergman, E. A., & Priestley, K. (2006). Relocation and assessment of seismicity in the Iran region. Geophysical Journal International, 167, 761–778.

    Google Scholar 

  • Engdahl, E. R., Vander Hilst, R. D., & Buland, R. P. (1998). Global teleseismic earthquake relocation with improved travel time sand procedures for depth determination. Bulletin of the Seismological Society of America, 88, 722–743.

    Google Scholar 

  • Fedetov, S. A. (1965). Regularities of the distribution of strong earthquakes in Kamchatka, the Kuril Islands, and the northeast Japan. In Seismic Nicroregionalization. Transactions of the Institute of Physics of the Earth, Academy of Sciences of the USSR (Trudy Instituta Fiziki Zemli, Akademiya Nauk SSSR), No. 36, pp. 66–93 [in Russian].

  • Gheitanchi, M. R., & Raeesi, M. (2004). Analysis of the 1997 Zirkuh (Ghean-Birjand) aftershock sequence in east Iran. Acta Seismologica Sinica, 17(1), 38–46.

    Google Scholar 

  • Hatzfeld, D., Authemayou, C., van der Beek, P., Bellier, O., Lavé, J., Oveisi, B., et al. (2010). The kinematics of the Zagros Mountains (Iran) (Vol. 330, pp. 19–42). London: Geological Society.

    Google Scholar 

  • Havskov, J., & Ottemöller, L. (2010). Routine data processing in earthquake seismology, with sample data, exercises and software. Dordrecht, Heidelberg, London, New York: Springer.

    Google Scholar 

  • Hessami K., Jamali F., and Tabassi H. (2003a). Map of Major Active Faults of Iran. Tech. rep., International Institute of Earthquake Engineering and Seismology (IIEES), internal report, https://www.iiees.ir.

  • Hessami, K., Pantosti, D., Tabassi, H., Shabanian, E., Abbassi, M. R., Feghhi, K., et al. (2003b). Paleoearthquakes and slip rates of the North Tabriz Fault NW Iran: Preliminary results. Annals of Geophysics, 46, 903–915.

    Google Scholar 

  • IGUT catalog. (2019). Institute of Geophysics University of Tehran, IGUT. http://irsc.ut.ac.ir

  • Jackson, J., & McKenzie, D. (1984). Active tectonics of the Alpine-Himalayan Belt between western Turkey and Pakistan. Geophysical Journal of the Royal Astronomical Society, 77, 185–264.

    Google Scholar 

  • Kadinsky-Cade, K., Barazangi, M., Oliver, J., & Isacks, B. (1981). Lateral variations of high-frequency Seismic wave propagations at regional distances across the Turkish and Iranian plateaus. Journal of Geophysical Research, 86, 9377–9396.

    Google Scholar 

  • Kanamori, H., & Anderson, D. C. (1975). Theoretical basis of some empirical relations in seismology. The Bulletin of the Seismological Society of America, 65, 1073–1096.

    Google Scholar 

  • Lay, T., Kanamori, H., & Ruff, L. (1982). The asperity model and nature of large subduction zone earthquakes. Earthquake Prediction Research (Japan), 1, 3–71.

    Google Scholar 

  • Mogi, K. (1962). Magnitude-frequency relationship for elastic shocks accompanying fractures of various materials and some related problems in earthquakes. Bulletin of the Earthquake Research Institute, University of Tokyo, Vol. 40, pp. 831–883.

  • Mogi, K. (1977). Seismic activity and earthquake prediction. In Earthquake prediction symposium, Tokyo, 203–14.

  • Mogi, K. (1985). Earthquake prediction. Tokyo: Academic press.

    Google Scholar 

  • Moradi, A., Hatzfeld, D., & Tatar, M. (2011). seismicity and seismotectonics of the North Tabriz fault (Iran). Tectonophysics, 506, 22–30.

    Google Scholar 

  • Nemati, M. (2013). Some aspects about seismology of 2012 August 11 Ahar-Vaezaghan (Azarbayjan, NW Persia) earthquakes sequences. Journal of Sciences, Islamic Republic of Iran, 24(3), 229–241.

    Google Scholar 

  • Nemati, M. (2014). An appraisal of aftershocks behavior for large earthquakes in Persia. Journal of Asian Earth Science, 79(A), 432–440.

    Google Scholar 

  • Nemati, M. (2015). Intermediate-term variations in 200 years seismicity in north of Iran. The Journal of Seismology, 19, 585–605.

    Google Scholar 

  • Nemati, M. (2017). Sequence signal processing of 2012 Ahar-Varzaghan earthquake (MW 6.4) of NW Iran. Environmental Earth Sciences, 76(495), 1–12.

    Google Scholar 

  • Nemati, M., & Gheitanchi, M. (2011). Analysis of 2005 Dahuieh (Zarand) aftershocks sequence in Kerman province. Journal of Earth and Space Physics, Institute of Geophysics of University of Tehran, 37(1), 1–9.

    Google Scholar 

  • Nemati, M., Hatzfeld, D., Gheitanchi, M., Sadidkhouy, A., & Mirzaei, N. (2011). Microseismicity and seismotectonics of the Firouzkuh and Astaneh faults (east Alborz, Iran). Tectonophysics, 506, 11–21.

    Google Scholar 

  • Nemati, M., Hollingsworth, J., Zhong, W., Bolourchi, M. J., & Talebian, M. (2013). Microseismicity and seismotectonics of the South Caspian Lowlands, northeast of Iran. Geophysical Journal International, 193, 1053–1070.

    Google Scholar 

  • Nemati, M., Oveisi, B., Foroutan, M., & Bolourchi, M. J. (2012). Geomorphology and seismology of MW=5.8 Koodian earthquake, Southeast Zagros. Quaterly Journal of Geoscience, Geological Survey of Iran, 85, 81–88.

    Google Scholar 

  • Nemati, M., & Tatar, M. (2015). Relations between source parameters for large Persian earthquakes. Annals of Geophysics, 58(5), S0543. https://doi.org/10.4401/ag-6665.

    Article  Google Scholar 

  • Nissen, E., Ghods, A., Karasözen, E., Elliott, J. R., Barnhart, W. D., Bergman, E. A., et al. (2019). The 12 November 2017 Mw 7.3 Ezgeleh-Sarpolzahab (Iran), Eearthquake and active tectonics of the Lurestan arc. Journal of Geophysical Research Solid Earth, 124, 1–19.

    Google Scholar 

  • Ohtake, M., Matomoto, T., & Latham, G. (1977). Seismicity gap near Oaxaca, southern Mexico as a probable precursor to a large earthquake. Pure and Applied Geophysics, 115, 375–385.

    Google Scholar 

  • Ohtake, M., Matomoto, T., & Latham, G. (1981). Evaluation of the forcast of the 1978 Oaxaca, southern Mexico earthquake based on a precursory seismic quiescence. An international review (pp. 53–62). Washington D.C.: American Geophysical Union.

    Google Scholar 

  • Ritz, J. F., Nazari, H., Ghassemi, A., Salamati, R., Shafei, A., Solaymani, S., et al. (2006). Active transtension inside central Alborz: A new insight into northern Iran–southern Caspian geodynamics. Geology, 34, 477–480.

    Google Scholar 

  • Rizza, M., Vernant, P., Ritz, J. F., Peyret, M., Nazari, H., Nankali, H., et al. (2013). Morphotectonics and geodetic evidences for a constant slip-rate over the last 45 kyr along the Tabriz Fault (Iran). Geophysical Journal International, 193(3), 1083–1094.

    Google Scholar 

  • Scholz, C. (1988). The mechanism of seismic quiescence. Pure and Applied Geophysics, 126, 701–718.

    Google Scholar 

  • Scholz C. (1990). The mechanics of the earthquakes and faulting. Cambridge University Press, ISBN: 0–521–33443–8.

  • Sepahvand, M. R., Yamini-Fard, F., Tatar, M., & Abbassi, M. R. (2012). Aftershocks study of the 2006 Silakhur earthquake (Zagros, Iran): Seismological evidences for a pull-apart basin along the Main Recent Fault, Doroud segments. Journal of Seismology, 16(2), 233–251.

    Google Scholar 

  • Solaymani Azad, Sh, Nemati, M., Abbassi, M. R., Foroutan, M., Hessami, Kh, Dominguez, S., et al. (2019). Active-couple indentation in geodynamics of NNW Iran: Evidence from synchronous left- and right-lateral co-linear seismogenic faults in western Alborz and Iranian Azerbaijan domains. Tectonophysics, 754, 1–17.

    Google Scholar 

  • Stuart W.D., and Aki K. (eds.) (1988). Intermediate-term earthquake prediction. Pure Appl. Geophys., 126(2–4), 175–718.

  • Talebian, M., & Jackson, J. A. (2002). Offset on the Main Recent Fault of NW Iran and implication for the late Cenozoic tectonics of the Arabia-Eurasia collision zone. Geophysical Journal International, 150, 422–439.

    Google Scholar 

  • Talebian, M., & Jackson, J. A. (2004). A reappraisal of earthquake focal mechanisms and active shortening in the Zagros mountains of Iran. Geophysical Journal International, 156, 506–526.

    Google Scholar 

  • Tatar, M., Hatzfeld, D., & Ghafory-Ashtiany, M. (2004). Tectonics of the Central Zagros (Iran) deduced from micro-earthquake seismicity. Geophysical Journal International, 156, 255–266.

    Google Scholar 

  • Tatar, M., Hatzfeld, D., Moradi, A., & Paul, A. (2005). The 2003 December 26 Bam earthquake (Iran), Mw 6.6, aftershock sequence. Geophysical Journal International, 163, 90–105. https://doi.org/10.1111/j.1365-246X.2005.02639.x.

    Article  Google Scholar 

  • Tchalenko, J. S., Braud, J., & Berberian, M. (1974). Discovery of three earthquake faults in Iran. Nature, 248, 661–663.

    Google Scholar 

  • Vernant, P., Nilforoushan, F., Hatzfeld, D., Abassi, M., Vigny, C., Masson, F., et al. (2004). Contemporary crustal deformation and plate kinematics in Middle east constrained by GPS measurements in Iran and northern Oman. Geophysical Journal International, 157, 381–398.

    Google Scholar 

  • Walker, R. T., Bergman, E. A., Elliott, J. R., Fielding, E. J., Ghods, A. R., Qorashi, M., et al. (2013). The 2010–2011 South Rigan (Baluchestan) earthquake sequence and its implications for distributed deformation and earthquake hazard in southeast Iran. Geophysical Journal International, 193, 349–374.

    Google Scholar 

  • Walker, R. T., Bergman, E. A., Szeliga, W., & Fielding, E. J. (2011). Insights into the 1968–1997 Dasht-e-Bayaz and Zirkuh earthquake sequences, eastern Iran, from calibrated relocations, InSAR and high-resolution satellite imagery. Geophysical Journal International, 187(3), 1–27.

    Google Scholar 

  • Walker, R., & Jackson, J. (2004). Active tectonics and late Cenozoic strain distribution in central and eastern Iran. Tectonics, 23, 1–24.

    Google Scholar 

  • Walker, R., Jackson, J., & Baker, C. (2004). Active faulting and seismicity of the Dasht-e-Bayaz region, eastern Iran. Geophysical Journal International, 157, 265–282.

    Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationship among magnitude, rupture length, rupture area and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

    Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1998). New improved version of Generic Mapping Tools released. EOS Transactions of the American Geophysical Union, 79(47), 579.

    Google Scholar 

  • Wyss, M., & Habermann, R. E. (1988). Precursory seismic quiescence. Pure and Applied Geophysics, 126(2–4), 701–718.

    Google Scholar 

  • Yamini-Fard, F., Hatzfeld, D., Farahbod, A. M., Paul, A., & Mokhtari, M. (2007). The diffuse transition between the Zagros continental collision and the Makran oceanic subduction (Iran): Microearthquake seismicity and crustal structure. Geophysical Journal International, 170, 182–194.

    Google Scholar 

  • Yamini-Fard, F., Hatzfeld, D., Tatar, M., & Mokhtari, M. (2006). Microearthquake seismicity at the intersection between the Kazerun Fault and the Main Recent Fault (Zagrs, Iran). Geophysical Journal International, 166, 186–196.

    Google Scholar 

  • Yazdanfar, C., Nemati, M., Agh Ataby, M., Roustaei, M., & Nilfouroushan, F. (2018). Stress transfer, aftershocks distribution and InSAR analysis of the 2005 Dahuieh earthquake, SE Iran. Journal of African Earth Science, 147, 211–219.

    Google Scholar 

Download references

Acknowledgements

Thanks the IGUT and IIEES for their online recent earthquake catalogs (2006 to 2013). All the diagrams, histograms and maps were generated using the GMT software (Wessel and Smith 1998).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Nemati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nemati, M., Derakhshani, R. Short-term seismicity patterns along the most active faults in Iran. J Iber Geol 47, 441–459 (2021). https://doi.org/10.1007/s41513-020-00133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41513-020-00133-0

Palabras clave

Keywords

Navigation