Skip to main content
Log in

Generation of fractals by \(\Phi\)-iterated tupling system

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present new m-tuple fractals using strong m-tuple fixed point method, which provides a positive answer to the question of Petruşel and Petruşel [24] concerning the generation of multiple fractals. Illustrative examples and numerical calculations are given to support the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The manuscript has no associated data.

References

  1. Agrawal, V., T. Som, and S. Verma. 2022. On bivariate fractal approximation. The Journal of Analysis 30 (4): 1765–1783.

    Article  MathSciNet  Google Scholar 

  2. Aydi, H., E. Karapinar, and S. Radenović. 2013. Tripled coincidence fixed point results for boyd-wong and matkowski type contractions. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales Serie A Matematicas 107: 339–353.

    Article  MathSciNet  Google Scholar 

  3. Aydi, H., E. Karapinar, and W. Shatanawi. 2012. Tripled fixed point results in generalized metric spaces. Journal of Applied Mathematics, 2012.

  4. Barnsley, M.F. 2014. Fractals everywhere. New York: Academic Press.

    Google Scholar 

  5. Berinde, V., and M. Borcut. 2011. Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces. Nonlinear Analysis: Theory, Methods & Applications 74 (15): 4889–4897.

    Article  MathSciNet  Google Scholar 

  6. Bhaskar, T.G., and V. Lakshmikantham. 2006. Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Analysis: Theory, Methods & Applications 65 (7): 1379–1393.

    Article  MathSciNet  Google Scholar 

  7. Boyd, D.W., and J.S. Wong. 1969. On nonlinear contractions. Proceedings of the American Mathematical Society 20 (2): 458–464.

    Article  MathSciNet  Google Scholar 

  8. Chen, G.-X., S. Jabeen, S.U. Rehman, A.M. Khalil, F. Abbas, A. Kanwal, and H. Ullah. 2020. Coupled fixed point analysis in fuzzy cone metric spaces with an application to nonlinear integral equations. Advances in Difference Equations 2020 (1): 1–25.

    Article  MathSciNet  Google Scholar 

  9. Choudhury, B.S., and P. Chakraborty. 2022. Strong fixed points of \(\phi\)-couplings and generation of fractals. Chaos, Solitons & Fractals 163: 112514.

    Article  MathSciNet  Google Scholar 

  10. Choudhury, B.S., and P. Maity. 2014. Cyclic coupled fixed point result using Kannan type contractions. Journal of Operators, 2014.

  11. Choudhury, B.S., P. Maity, and P. Konar. 2017. Fixed point results for couplings on metric spaces. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics 79 (1): 1–12.

    MathSciNet  Google Scholar 

  12. Guo, D., and V. Lakshmikantham. 1987. Coupled fixed points of nonlinear operators with applications. Nonlinear Analysis: Theory, Methods & Applications 11 (5): 623–632.

    Article  MathSciNet  Google Scholar 

  13. Imdad, M., A. Sharma, and K. Rao. 2015. Generalized n-tupled fixed point theorems for nonlinear contractions. Afrika Matematika 26 (3): 443–455.

    Article  MathSciNet  Google Scholar 

  14. Imdad, M., A.H. Soliman, B.S. Choudhury, and P. Das. 2013. On-tupled coincidence point results in metric spaces. Journal of Operators, 2013.

  15. Jinhu, Y., and F. Wentao. 2000. Fractal properties of statistically self-similar sets. Acta Mathematica Scientia 20 (2): 256–260.

    Article  MathSciNet  Google Scholar 

  16. Joseph, J.M., J. Beny, and M. Marudai. 2019. Best proximity point theorems in b-metric spaces. The Journal of Analysis 27: 859–866.

    Article  MathSciNet  Google Scholar 

  17. Karapinar, E. 2010. Couple fixed point theorems for nonlinear contractions in cone metric spaces. Computers & Mathematics with Applications 59 (12): 3656–3668.

    Article  MathSciNet  Google Scholar 

  18. Karapinar, E., and A. Roldán. 2013. A note on “n-tuplet fixed point theorems for contractive type mappings in partially ordered metric spaces’’. Journal of Inequalities and Applications 2013 (1): 1–7.

    Article  MathSciNet  Google Scholar 

  19. Kirk, W., P. Srinivasan, and P. Veeramani. 2003. Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Theory 4 (1): 79–89.

    MathSciNet  Google Scholar 

  20. Mandelbrot, B.B. 1982. The fractal geometry of nature, volume 1. WH Freeman, New York.

  21. Massopust, P. 2024. Fractal hypersurfaces, affine weyl groups, and wavelet sets. The Journal of Analysis 32 (1): 399–431.

  22. Mondal, P., H. Garai, A. Petruşel, and L.K. Dey. 2023. On best proximity points of cyclic contractions via implicit relations. The Journal of Analysis 31 (3): 1771–1782.

    Article  MathSciNet  Google Scholar 

  23. Păcurar, M., and I.A. Rus. 2010. Fixed point theory for cyclic \(\phi\)-contractions. Nonlinear Analysis 72 (3–4): 1181–1187.

    Article  MathSciNet  Google Scholar 

  24. Petruşel, A., and G. Petruşel. 2019. Coupled fractal dynamics via Meir-Keeler operators. Chaos, Solitons & Fractals 122: 206–212.

    Article  MathSciNet  Google Scholar 

  25. Petruşel, A., and A. Soós. 2018. Coupled fractals in complete metric spaces. Nonlinear Analysis: Modelling and Control 23 (2): 141–158.

    Article  MathSciNet  Google Scholar 

  26. Reddy, K., A. Chand, and P. Viswanathan. 2020. Data visualization by rational fractal function based on function values. The Journal of Analysis 28: 261–277.

    Article  MathSciNet  Google Scholar 

  27. Rad, G.S., S. Shukla, and H. Rahimi. 2015. Some relations between n-tuple fixed point and fixed point results. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas 109: 471–481.

    Article  MathSciNet  Google Scholar 

  28. Samet, B., and C. Vetro. 2010. Coupled fixed point, \(f\)-invariant set and fixed point of \(n\)-order. Annals of Functional Analysis 1 (2): 46–56.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work of the second author is financially supported by the CSIR, India with Grant No: 09/1217(13093)/ 2022-EMR-I. Furthermore, the authors would like to express their gratitude to the reviewers for their valuable suggestions to enhance the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanmoy Som.

Ethics declarations

Conflict of interest

The authors have no conflict of interest in this paper.

Additional information

Communicated by S Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Som, T., Sarkar, J. & Gopal, D. Generation of fractals by \(\Phi\)-iterated tupling system. J Anal (2024). https://doi.org/10.1007/s41478-024-00744-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41478-024-00744-1

Keywords

Mathematics Subject Classification

Navigation