Skip to main content
Log in

Some results on the space of rational cubic fractal interpolation functions

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this article, rational cubic fractal interpolation function (RCFIF) with three shape parameters is constructed. We develope the orthonormal basis consists of cardinal RCFIFs for the space of RCFIFs with fixed parameters. We show the space RCFIFs with fixed parameters is a reproducing kernel Hilbert space and we study the curve fitting problem. Also, we discuss the orthogonal projection on the space of RCFIFs with fixed parameters. Further, we study the constrained aspects of cardinal RCFIFs. Numerical results are provided to support theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Balasubramani, N. 2017. Shape preserving rational cubic fractal interpolation function. Journal of Computational and Applied Mathematics 319: 277–295.

    Article  MathSciNet  Google Scholar 

  2. Balasubramani, N., and A. Gowrisankar. 2021. Affine recurrent fractal interpolation functions. The European Physical Journal Special Topics 230 (21–22): 3765–3779.

    Article  Google Scholar 

  3. Barnsley, M.F. 1986. Fractal functions and interpolation. Constructive Approximation 2: 303–329.

    Article  MathSciNet  Google Scholar 

  4. Barnsley, M.F., and A.N. Harrington. 1989. The calculus of fractal interpolation functions. Journal of Approximation Theory 57 (1): 14–34.

    Article  MathSciNet  Google Scholar 

  5. Barnsley, M.F., J. Elton, D. Hardin, and P. Massopust. 1989. Hidden variable fractal interpolation functions. SIAM Journal on Mathematical Analysis 20 (5): 1218–1242.

    Article  MathSciNet  Google Scholar 

  6. Bouboulis, P., and M. Mavroforakis. 2011. Reproducing kernel Hilbert spaces and fractal interpolation. Journal of Computational and Applied Mathematics 235 (12): 3425–3434.

    Article  MathSciNet  Google Scholar 

  7. Chand, A.K.B., and G.P. Kapoor. 2006. Generalized cubic spline fractal interpolation functions. SIAM Journal on Numerical Analysis 44 (2): 655–676.

    Article  MathSciNet  Google Scholar 

  8. Chand, A.K.B., and N. Vijender. 2014. Monotonicity preserving rational quadratic fractal interpolation functions. Advances in Numerical Analysis 2014: 17.

    Article  MathSciNet  Google Scholar 

  9. Chand, A.K.B., and P. Viswanathan. 2013. A constructive approach to cubic Hermite fractal interpolation function and its constrained aspects. BIT Numerical Mathematics 53: 841–865.

    Article  MathSciNet  Google Scholar 

  10. Chand, A.K.B., N. Vijender, and M.A. Navascués. 2014. Shape preservation of scientific data through rational fractal splines. Calcolo 51 (2): 329–362.

    Article  MathSciNet  Google Scholar 

  11. Chand, A.K.B., N. Vijender, P. Viswanathan, and A.V. Tetenov. 2020. Affine zipper fractal interpolation functions. BIT Numerical Mathematics 60: 319–344.

    Article  MathSciNet  Google Scholar 

  12. Craciunescu, O.I., S.K. Das, J.M. Poulson, and T.V. Samulski. 2001. Three-dimensional tumor perfusion reconstruction using fractal interpolation functions. IEEE Transactions on Biomedical Engineering 48 (4): 462–473.

    Article  Google Scholar 

  13. Dalla, L., and V. Drakopoulos. 1999. On the parameter identification problem in the plane and the polar fractal interpolation functions. Journal of Approximation Theory 101 (2): 289–302.

    Article  MathSciNet  Google Scholar 

  14. Drakopoulos, V., P. Bouboulis, and S. Theodoridis. 2006. Image compression using affine fractal interpolation on rectangular lattices. Fractals 14 (04): 259–269.

    Article  MathSciNet  Google Scholar 

  15. Luor, D.C. 2018. Fractal interpolation functions with partial self similarity. Journal of Mathematical Analysis and Applications 464 (1): 911–923.

    Article  MathSciNet  Google Scholar 

  16. Luor, D.C. 2022. Reproducing kernel Hilbert spaces of fractal interpolation functions for curve fitting problems. Fractals 30 (03): 1–10.

    Article  Google Scholar 

  17. Navascués, M.A. 2005. Fractal polynomial interpolation. Zeitschrift für Analysis und ihre Anwendungen 24 (2): 401–418.

    Article  MathSciNet  Google Scholar 

  18. Navascués, M.A. 2014. Affine fractal functions as bases of continuous functions. Quaestiones Mathematicae 37 (3): 415–428.

    Article  MathSciNet  Google Scholar 

  19. Navascués, M.A., and M.V. Sebastián. 2006. Error bounds for affine fractal interpolation. Mathematical Inequalities and Applications 9 (2): 273.

    Article  MathSciNet  Google Scholar 

  20. Paulsen, V.I., and M. Raghupathi. 2016. An introduction to the theory of reproducing kernel Hilbert spaces. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  21. Prasad, S.A. 2019. Reproducing kernel Hilbert space and coalescence hidden-variable fractal interpolation functions. Demonstratio Mathematica 52 (1): 467–474.

    Article  MathSciNet  Google Scholar 

  22. Saitoh, S., and Y. Sawano. 2016. Theory of reproducing kernels and applications. Singapore: Springer.

    Book  Google Scholar 

  23. Tyada, K.R., A.K.B. Chand, and M. Sajid. 2021. Shape preserving rational cubic trigonometric fractal interpolation functions. Mathematics and Computers in Simulation 190: 866–891.

    Article  MathSciNet  Google Scholar 

  24. Viswanathan, P., and A.K.B. Chand. 2014. \(\alpha \)-fractal rational splines for constrained interpolation. Electronic Transactions on Numerical Analysis 41: 420–442.

    MathSciNet  Google Scholar 

  25. Viswanathan, P., and A.K.B. Chand. 2014. A fractal procedure for monotonicity preserving interpolation. Applied Mathematics and Computation 247: 190–204.

    Article  MathSciNet  Google Scholar 

  26. Viswanathan, P., and A.K.B. Chand. 2015. A \(\cal{C} ^1\)-rational cubic fractal interpolation function: convergence and associated parameter identification problem. Acta Applicandae Mathematicae 136 (1): 19–41.

    Article  MathSciNet  Google Scholar 

  27. Viswanathan, P., A.K.B. Chand, and M.A. Navascués. 2015. A rational iterated function system for resolution of univariate constrained interpolation. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 109: 483–509.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the unknown referees for their valuable comments and suggestions, which helps to improve the presentation. The second author work was supported by the Ministry of Science and Technology, R.O.C., under Grant MOST 111-2115-M-214-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Balasubramani.

Ethics declarations

Conflict of interest

The authors declare that they have no Conflict of interest.

Additional information

Communicated by S. Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramani, N., Luor, DC. Some results on the space of rational cubic fractal interpolation functions. J Anal (2024). https://doi.org/10.1007/s41478-024-00734-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41478-024-00734-3

Keywords

Mathematics Subject Classification

Navigation