1 Introduction

The concept of hyperoperation is a generalization of the binary operation in a classical algebraic system. Algebraic hyperstructures are the extensions of classical algebraic structures, where the composition of two elements is again a set. Let \(\mathcal {P}^{*}(\mathbb {S})\) be the collection of non-empty subsets of \(\mathbb {S}\ne \emptyset .\) A hyperoperation on \(\mathbb {S}\) is a mapping \(\circ :\mathbb {S} \times \mathbb {S }\rightarrow \mathcal {P}^{*}(\mathbb {S}),\) and \((H,\circ )\) is called a hypergropoid. A hypergroupoid is a semihypergroup if \((\mathbb {S},\circ )\) is a hypergroupoid which satisfies

$$\begin{aligned} (s_1\circ s_2)\circ s_3=s_1\circ (s_2\circ s_3) \text {, that is, } \bigcup _{v\in s_1\circ s_2} v\circ s_3=\bigcup _{u\in s_2\circ s_3}s_1\circ u \end{aligned}$$

for all \(s_1,s_2,s_3\) in \(\mathbb {S}.\)

Al-Tahan and Davvaz [4] characterized \(\lambda\)-constacylic codes over hyperfields in terms of their generating polynomial. Mirvakili et al. [9] constructed regular hyperrings from hyperrings using \(\alpha ^*\) relations. Mirvakili and Davvaz [8] studied the properties of rings obtained from \(\mathcal {U}\)-relation and showed that the derieved hyperring is a normal hyperideal. Mirvakili et al. [10] introduce a new relation so that the quotient ring obtained with respect to this relation is finitely generated. Pallavi et al. [11] and Harikrishnan et al. [12] explored several properties related to 2-absorbing hyperideals in hyperlattices. Hypervector space is formed by considering at least one operation as hyperoperation in a vector space over a field. A simple generalization of vector spaces over fields is the one given by Tallini [17] in which scalar multiplication is a hyperoperation. In this structure, Ameri and Dehghan [5] have discussed notions like linearly independent set, and basis, and explored results on certain classes of hypervector spaces. Raja and Vaezpour [14] have proved results on continuity and convexity. Later, Taghavi and Hosseinzadeh [18] considered the weak notions of this structure and studied operators using the idea of essential points. They proved several fundamental results like the Hanh Banach theorem [19] and discussed the spectrum of Banach Algebra [20]. AL-Tahan and Davvaz [2] generalized the hypervector space by considering canonical hypergroup over a hyperfield and established rank-nullity theorem. In [3], the authors defined the norm of an operator by providing the link between continuous and bounded operators. In [13], the notions like direct sums, complements, etc., of subhyperspace, linear transformation between two hypervector spaces were introduced by Pallavi et al., and isomorphism theorems were proved. Section 2 provides the preliminary notions and results connected to hypervector spaces over a hyperfield. In Sect. 3, we obtain results on open sets in a hypernormed space. We extend the linear functional \(\mu\) on a subhyperspace \(\mathbb {W}\) of a real hypervector space \(\mathbb {V}\) to a linear functional \(\mu '\) to a subhyperspaces \(W\subsetneq W'\) of \(\mathbb {V}.\) In Sect. 4, we prove that the natural linear transformation from \(\mathbb {V}\) to \(\dfrac{\mathbb {V}}{Z}\) is continuous and open for all closed subhyperspace Z of \(\mathbb {V}\). Next, we prove that \(BL(\mathbb {V},\mathbb {W}),\) the set of all bounded linear transformations from \(\mathbb {V}\) to \(\mathbb {W}\) is a hyper-Banach space whenever \(\mathbb {W}\) is complete. Finally, we establish that in a hyper-Banach space \(\mathbb {V}\) over a hyperfield K,  and if \(\lbrace \mu _n \rbrace\) is a sequence of continuous linear functionals with \(\lbrace /\mu _n(u)/ \rbrace\) is bounded for every \(u \in \mathbb {V},\) then \(\lbrace \Vert \mu _n\Vert \rbrace\) is bounded. We refer to [2, 13] for the basics of hypervector spaces and [7] for the basics of metric spaces.

2 Preliminaries

In this section, we discuss the necessary concepts used in this paper.

Definition 2.1

[6] A semihypergroup \((H,\circ )\) is a hypergroup if \(\,\text {for all}\, x\in H\), we have

$$\begin{aligned} x\circ H=H\circ x=H. \end{aligned}$$

Definition 2.2

[6] A hypergroup \((H,+)\) is called a quasicanonical hypergroup if

  1. 1.

    there is \(0\in H\,\)such that \(\,u+0=0+u=u,\,\text {for all}\, u\in H;\)

  2. 2.

    for every \(u\in H,\) there exists one and only one \(u'\in H\) such that \(\, 0\in (u+u')\cap (u'+u),\) \(u'\) is denoted by \(-u;\)

  3. 3.

    \(w\in u+v\,\text {implies} \,v\in -u+w\)  and  \(u\in w-v,\) for all \(u,v,w \in H.\)

A canonical hypergroup is a hypergroup \((H,+)\) which is quasicanonical and commutative.

Definition 2.3

[6] A weak hyperring is an algebraic hyperstructure \((R,+,\cdot )\) which satisfies the following axioms:

  1. 1.

    \((R,+)\) is a canonical hypergroup;

  2. 2.

    \((R,\cdot )\) is a semigroup with zero as a bilaterally absorbing element, that is, \(u\cdot 0=0\cdot u=0;\)

  3. 3.

    \(u(v+w)\subseteq uv+uw\) and \((u+v)w \subseteq uw+vw,\)

for all \(u,v,w\in R.\)

A weak hyperring is called a Krasner hyperring if equality holds in Condition 3 of Definition 2.3. A Krasner hyperring \((R,+,\cdot )\) is called commutative (with unit element) if \((R,\cdot )\) is a commutative semigroup (with unit element).

Definition 2.4

[6] A Commutative Krasner hyperring with unity is called a hyperfield if \((R\setminus \{0\},\cdot )\) is a group.

Example 2.5

[3] Let \(\mathbb {T}=\mathbb {R}\cup \{-\infty \}\) with the following hyperoperations

$$s \oplus t = \left\{ {\begin{array}{ll}{\max \{ s,t\} ,}&{{\rm if} s \ne t;}\\{[ - \infty ,s],}&{otherwise}\end{array}} \right.,$$

and

$$\begin{aligned} s\odot t=s+t \end{aligned}$$

for all \(s,t\in \mathbb {T}.\) Then \((\mathbb {T},\oplus ,\odot )\) is a hyperfield.

Example 2.6

[21] Let \(V=\mathbb {R}_{\ge 0}\) set of all non-negative real numbers. We define the following hyperoperations on V.

$$\begin{aligned}&r_1 \bigtriangleup r_2= \{r\in V:|r_1-r_2| \le r\le r_1+r_2\},\\ &r_1 \bigtriangledown r_2= {\left\{ \begin{array}{ll} \max \{r_1,r_2\}, & {\rm if}\, r_1 \ne r_2;\\ \,[0,r_1], & {\rm otherwise} \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} r_1\odot r_2=r_1r_2 \end{aligned}$$

for all \(r_1,r_2\in V.\) Then \((V,\triangle ,\odot )\) and \((V,\triangledown ,\odot )\) are hyperfields, called triangle and ultra triangle hyperfields respectively.

Example 2.7

[21] Let \(\mathbb {C}\) be the set of all complex numbers with the following hyperoperation:

$$\begin{aligned} x\diamond y={\left\{ \begin{array}{ll} \{x\}, &{}\, \text {if}\, |x|>|y|;\\ \{y\}, &{} \,\text {if}\, |y|> |x|;\\ \{c\in \mathbb {C}:c\in S_{xy}\}, &{} \,\text {if}\, x+y\ne 0\, \text {and}\,|x|=|y|;\\ \{c\in \mathbb {C}:|c|\le |x|\}, &{} \,\text {if} \,x+y=0, \end{array}\right. } \end{aligned}$$

and

$$\begin{aligned} x\odot y=xy, \end{aligned}$$

for all \(x,y\in \mathbb {C}.\) Here, \(S_{xy}\) is the shortest arc connecting x to y on the circle |x| as the absolute value. Then \((\mathbb {C},\diamond ,\odot )\) is a hyperfield called a Complex tropical hyperfield, and it is denoted by \(\mathcal {T}_{\mathbb {C}} .\)

Example 2.8

[21] Let \(\mathcal {S}\) be the complex tropical hyperfield described in Example 2.7. Then the set \(\mathfrak {S}=\lbrace z\in \mathbb {C}:\Vert z\Vert =1\rbrace \cup \{0\}\) inherits the hyperfield structure from \(\mathcal {T}_{\mathbb {C}} .\) The hyperoperation addition is as follows:

$$\begin{aligned} z_1\diamond _{\mathfrak {S}} z_2=z_1\diamond z_2\cap \mathfrak {S}={\left\{ \begin{array}{ll} \{c\in \mathbb {C}:c\in S_{z_1z_2}\}, &{} \text {if}\, z_1+z_2\ne 0;\\ \mathfrak {S}, &{} \text {otherwise}, \end{array}\right. } \end{aligned}$$

for all \(z_1,z_2\in \mathfrak {S}.\)

Definition 2.9

[2] Let F be a hyperfield. A canonical hypergroup \((\mathbb {V},+)\) together with a map \(\cdot :F\times \mathbb {V}\rightarrow \mathbb {V}\) is called a weak hypervector space over F if the following conditions hold:

  1. 1.

    \(\alpha \cdot (u_1+u_2)\subseteq \alpha \cdot u_1 + \alpha \cdot u_2;\)

  2. 2.

    \((\alpha +\beta )\cdot u_1\subseteq \alpha \cdot u_1+\beta \cdot u_1;\)

  3. 3.

    \(\alpha \cdot (\beta \cdot u_1)=(\alpha \beta )\cdot u_1;\)

  4. 4.

    \(\alpha \cdot (-u_1)=(-\alpha )\cdot u_1= -(\alpha \cdot u_1);\)

  5. 5.

    \(1\cdot u_1=u_1,\)

for all \(\alpha ,\beta \in F,u_1, u_2\in \mathbb {V}\) and \(1\in F.\)

A weak hypervector space is a hypervector space over F if (1) and (2) hold with equality.

Definition 2.10

[3] A hyperabsolute value of a hyperfield K is a function \(/\cdot /:K\rightarrow \mathbb {R}_{\ge 0}\) satisfying the following conditions:

  1. 1.

    \(/k/=0\) if and only if \(k=0;\)

  2. 2.

    \(/kk'/ =/k//k'/;\)

  3. 3.

    \(\sup \{/k/:k_1\in k+k'\} \le /k/+ /k'/,\)

for all \(k,k'\in K.\)

Example 2.11

[1] In Example 2.5, \((\mathbb {T},\oplus ,\odot )\) is a hyperfield. We define \(/\cdot /\) on \(\mathbb {T}\) as follows:

$$\begin{aligned} /v/={\left\{ \begin{array}{ll} 0, \,&{}\text {if} \,v=-\infty ;\\ e^v, \,&{} \text {otherwise.} \end{array}\right. } \end{aligned}$$

Then \(/\cdot /\) is a hyperabsolute value of \(\mathbb {T}.\) Furthermore, \(/\cdot /\) is an onto map.

3 Hypernormed spaces

This section provides some examples of hypervector spaces and explores linear transformations on hypernormed spaces.

Throughout this paper, let K denote the hyperfield on which the hyperabsolute value defined is an onto map.

Example 3.1

In Example 2.6, the map \(/\cdot /:\mathbb {V}\rightarrow \mathbb {R}\) defined by \(/a/=a\) for all \(a\in \mathbb {V}\) is a hyperabsolute value.

Example 3.2

For \(\mathfrak {S}\) given in Example 2.8, the map \(/\cdot /:\mathfrak {S}\rightarrow \mathbb {R}\) defined by \(/z/=|z|,\) (the absolute value of a complex number) for all \(z\in \mathfrak {S}\) is a hyperabsolute map on \(\mathfrak {S}.\)

Definition 3.3

[3] A hypernorm on a hypervector space \(\mathbb {V}\) over a valued hyperfield K is a function \(\Vert \cdot \Vert :\mathbb {V}\rightarrow \mathbb {R}\) satisfying the following conditions:

  1. 1.

    \(\Vert v\Vert =0\) if and only if \(v=\overline{0};\)

  2. 2.

    \(\Vert av\Vert = /a/\Vert v\Vert ;\)

  3. 3.

    \(sup \Vert z\Vert _{z\in v+w} \le \Vert v\Vert +\Vert w\Vert ,\)

for all \(v,w\in \mathbb {V},a\in K.\) Then \((V,\Vert .\Vert )\) is called a hypernormed space.

Example 3.4

[3] Let \(\mathbb {V}\) be a finite dimensional hypervector space over a hyperfield and \(\{u_1,u_2,\ldots u_p\}\) be a basis of \(\mathbb {V}.\) Define \(\Vert \cdot \Vert\) on \(\mathbb {V}\) as follows:

$$\begin{aligned} \Vert v\Vert =\left\| \sum \limits _{i=1}^{p} \alpha _iu_i\right\| =\max \{/\alpha _i/:1\le i \le p\}. \end{aligned}$$

Then \(\Vert \cdot \Vert\) is a norm on \(\mathbb {V}.\)

Example 3.5

[13] From Example 2.6, with the external operation \((a,v)\mapsto av,\) \((\mathbb {V},\triangle )\) is a weak hypervector space over \(K=(\mathbb {V},\triangledown ,\odot ).\)

Example 3.6

For the hypervector space discussed in Example 3.5, the map \(\Vert \cdot \Vert :\mathbb {V}\rightarrow \mathbb {R}\) given by \(\Vert v\Vert =v\) is a hypernorm on \(\mathbb {V}.\)

Example 3.7

Let K be a valued hyperfield and \(\mathbb {V}=\mathcal {M}_{n\times m }\) denote the weak hypervector space of \(n\times m\) matrices over the hyperfield K. The maps \(\Vert \cdot \Vert _1,\Vert \cdot \Vert _2: \mathbb {V}\times \mathbb {V}\rightarrow \mathbb {R}\) defined by

  1. 1.

    \(\Vert A\Vert _1=\max \limits _{1\le i\le n} \sum \limits _{1\le j\le m}/a_{ij}/,\)

  2. 2.

    \(\Vert A\Vert _2=\max \limits _{1\le j\le m} \sum \limits _{1\le i\le n}/a_{ij}/,\)

for all \(A\in \mathcal {M}_{n\times m}\) are norms on \(\mathcal {M}_{n\times m }.\)

In [13], the authors have shown that \((\mathbb {C},\diamond )\) is a weak hypervector space over the hyperfield \((\mathfrak {S},\diamond _{\mathfrak {S}},\odot ).\)

Example 3.8

The map \(\Vert \Vert :\mathbb {C}\rightarrow \mathbb {R}\) defined by \(\Vert v\Vert =|v|,\) (the absolute value of a complex number) for all \(v\in \mathbb {C},\) is a hypernorm on \((\mathbb {C},\diamond ) .\)

Proposition 3.9

[15] Let \(\mathbb {V}\) be a hypernormed space and \(u,v,w\in \mathbb {V}.\) Then \(\inf \{|t\Vert :t\in u-v\}\le \inf \{\Vert t\Vert :t\in u-w\}+\inf \{\Vert t\Vert :t\in w-v\} .\)

Proposition 3.10

[15] Let \((\mathbb {V}, \Vert \cdot \Vert )\) be a hypernormed space and \(u,v\in \mathbb {V}.\) Then \(\inf \{\Vert z\Vert :z\in u-v\}\ge \,\bigl |\Vert u\Vert -\Vert v\Vert \bigl |.\)

Remark 3.11

Let \((\mathbb {V},\Vert .\Vert )\) be a hypernormed space. We define \(d:\mathbb {V}\times \mathbb {V}\rightarrow \mathbb {R}\) as follows:

$$\begin{aligned} d(v,w)=\inf \left\{ \Vert z\Vert :z\in v-w\right\} \end{aligned}$$

for all \(v,w\in \mathbb {V}.\) Then the map d has the following properties

  1. 1.

    \(d(v,v)=0;\)

  2. 2.

    \(d(v,w)=d(w,v);\)

  3. 3.

    \(d(v,w) \le d(v+z)+d(z+w);\)

  4. 4.

    \(d(v,w)\ge |\Vert v\Vert -\Vert w\Vert |.\) In particular, \(d(v,w)=0\) implies \(\Vert v\Vert =\Vert w\Vert .\)

Now on wards we consider hypernormed space \(\mathbb {V}\) in which for any \(x,y\in \mathbb {V}\) with \(\inf \{\Vert z\Vert :z\in x-y\}=0\) implies \(x=y\) holds. In such a case, \(d(x,y)=\inf \left\{ \Vert z\Vert :z\in x-y\right\}\) is a metric on \(\mathbb {V}.\)

Corollary 3.12

Let \((\mathbb {V},\Vert \cdot \Vert )\) be a hypernormed space. Then the map \(\Vert \cdot \Vert\) is continuous.

Proof

The proof follows from Proposition 3.10. \(\square\)

Definition 3.13

[3] For a hypernormed space \(\mathbb {V},\) we define an open ball B(vr) in \(\mathbb {V}\) as

$$\begin{aligned} B(v,r)=\{w\in \mathbb {V}:d ( v,w)<r\} \end{aligned}$$

for all \(v\in \mathbb {V},r>0.\)

Definition 3.14

Let \(\{v_n\}\) be a sequence in \(\mathbb {V}.\) Then

  1. 1.

    \(\{v_n\}\) is called Cauchy if for every \(\epsilon >0\) there exists \(N\in \mathbb {N}\) such that

    $$\begin{aligned} \inf \{\Vert z\Vert :z\in v_n-v_m\}<\epsilon \end{aligned}$$

    for every \(m>n\ge N.\)

  2. 2.

    \(\{v_n\}\) is said to converge to \(v\in \mathbb {V}\) if for every \(\epsilon >0\) there exists \(N\in \mathbb {N}\) such that

    $$\begin{aligned} \inf \{\Vert z\Vert :z\in v_n-v\}<\epsilon \end{aligned}$$

    for every \(n\ge N.\)

Definition 3.15

[13] Let \(\mathbb {V}\) and \(\mathbb {U}\) be two weak hypervector spaces over a hyperfield F. A map \(\mu :\mathbb {V}\rightarrow \mathbb {U}\) is called a weak linear transformation if

  1. 1.

    \(\mu (v+v')\subseteq \mu (v)+\mu (v');\)

  2. 2.

    \(\mu (\alpha v)=\alpha \mu (v),\)

for all \(v,v'\in \mathbb {V}\) and \(\alpha \in F.\)

A weak linear transformation \(\mu\) is a linear transformation if Condition (1) holds with equality.

Proposition 3.16

[15] Every Cauchy sequence in a hypernormed space is bounded. In particular, every convergent sequence in a hypernormed space is bounded.

Theorem 3.17

Let \(\mathbb {V}_1\) and \(\mathbb {V}_2\) be hypernormed spaces and \(\mu :\mathbb {V}_1\rightarrow \mathbb {V}_2\) be a linear transformation. Then \(\mu\) is an open map if and only if there exists some \(\gamma >0\) such that for every \(y \in \mathbb {V}_2\) there is some \(x\in \mathbb {V}_1\) with \(\mu (x)=y\) and \(\Vert x\Vert \le \gamma \Vert y\Vert .\)

Proof

Let \(\mu\) be an open map. Since \(B_{\mathbb {V}_1}(0,1)\) is open in \(\mathbb {V}_1,\) \(\mu \big (B_{\mathbb {V}_1}\left( 0,1\right) \big )\) is open in \(\mathbb {V}_2 .\) Now as \(\mu \left( 0\right) \in \mu \big (B_{\mathbb {V}_1}\left( 0,1\right) \big ),\) there exists \(\delta >0\) such that \(\overline{B_{\mathbb {V}_2}\left( 0,\delta \right) }\subseteq \mu \big (B_{\mathbb {V}_1}\left( 0,1\right) \big ).\) For any \(y\in \mathbb {V}_2\) with \(0\ne y\in \mathbb {V}_2,\) \(ky \in \overline{B_{\mathbb {V}_2}\left( 0,\delta \right) }\) where \(/k/=\dfrac{\delta }{\Vert y\Vert }, k\in K.\) So there exists \(x_1\in B_{\mathbb {V}_1}(0,1)\) such that \(\mu (x_1) =ky.\) Take \(x=\frac{1}{k}x_1.\) Then \(\mu (x) =k \frac{1}{k} y=y\) and \(\Vert x\Vert =\dfrac{\Vert x_1\Vert }{/k/}<\dfrac{\Vert y\Vert }{\delta }.\)

Conversely, suppose that there exists \(\gamma >0\) such that for every \(y\in \mathbb {V}_2,\) there is some \(x\in X\) with \(\mu (x)=y\) and \(\Vert x\Vert \le \gamma \Vert y\Vert .\) Let E be an open set in X,  and \(x_0\in E.\) Then there exists \(\delta >0\) such that \(B_{\mathbb {V}_1}(x_0,\delta ) \subseteq E.\) Let \(y\in \mathbb {V}_2\) with \(d\big (y,\mu (x_0)\big ) <\dfrac{\delta }{\gamma }.\) That is, \(\inf \{ \Vert z\Vert :z\in y-\mu (x_0)\}<\dfrac{\delta }{\gamma } .\) Then there exists \(t\in y-\mu (x_0)\) such that \(\Vert t\Vert <\dfrac{\delta }{\gamma }.\) The latter implies that, there exists \(x\in \mathbb {V}_1\) such that \(\mu (x)= t\) and \(\Vert x\Vert \le \gamma \Vert t\Vert <\delta\) implies \(\mu (x)\in y-\mu (x_0)\) which gives \(y\in \mu (x) +\mu (x_0)=\mu (x+x_0).\) So there exists \(x_1\in x+x_0\) such that \(\mu (x_1)=y.\) Further, \(x\in x_1-x_0 ,\) and so \(d(x_1,x_0)\le \Vert x\Vert <\delta .\) Therefore, \(x_1\in B_{\mathbb {V}_1}(x_0,\delta )\subseteq E.\) Having \(y=\mu (x_1)\in \mu (E),\) implies that \(B_{\mathbb {V}_2}\big (\mu (x_0,\frac{\delta }{\gamma })\big ) \subseteq \mu (E).\) \(\square\)

Theorem 3.18

Let \(\mathbb {V}\) be a hypernormed space, and W be a subhyperspace of \(\mathbb {V}.\) If W is open then for any \(E\subseteq \mathbb {V},\) \(W+E\) is open.

Proof

First, we show that for \(x\in \mathbb {V},\) \(r>0,\) \(B(x,r)=x+rB(0,1).\) Now,

$$\begin{aligned} t\in B(x,r)&\iff \inf \{\Vert z\Vert :z\in t-x\}<r\\&\iff \text { there exists } u\in t-x \text { such that } \Vert u\Vert <r \text { and so } u\in rB(0,1)\\&\iff t\in u+x \subseteq x+rB(0,1). \end{aligned}$$

Now \(x_1\in E.\) Since W is open, there exists \(r>0\) such that \(B(x,r)\subseteq W.\) Now

$$\begin{aligned} x_1+B(x,r)=x_1+x+rB(0,1) =\bigcup \limits _{t\in x_1+x}t+rB(0,1), \end{aligned}$$

is open. Also, \(x_1+B(x,r)=x_1+x+rB(0,1)\subseteq E+W.\) Thus, \(W+E\) is open. \(\square\)

Lemma 3.19

[2] Every linearly independent subset of \(\mathbb {V}\) is contained in a basis of \(\mathbb {V}\).

Theorem 3.20

[13] Let \(\mathbb {V}\) and \(\mathbb {V'}\) be hypervector spaces and \(\lbrace v_1, v_2,\ldots , v_n \rbrace\) be an ordered basis for \(\mathbb {V}.\) If \(\lbrace w_1 , w_2 ,\ldots , w_n \rbrace\) is an ordered set of elements in \(\mathbb {V'}\) with at most one non-zero \(w_i\) then there exists a unique weak linear transformation \(\varphi\) from \(\mathbb {V}\) to \(\mathbb {W}\) such that \(\varphi (v_i)=w_i\) for every \(1\le i \le n.\)

Proposition 3.21

Let \(W\subsetneq \mathbb {V}\) be a subhyperspace of a finite-dimensional hypervector space, \(u\in \mathbb {V} {\setminus } W ,\) and \(\gamma \in K.\) Then there exists a weak linear functional \(\mu\) on \(\mathbb {V}\) such that \(\mu\) vanishes on W and \(\mu (u)=\gamma .\)

Proof

Let B be a basis of W. Then \(B\cup \{u\}\) is linearly independent and hence by Lemma 3.19, is contained in a basis \(B'\) of \(\mathbb {V}.\) Now by Theorem 3.20, there exists a weak linear functional \(\mu\) such that \(\mu (B)=\{0\}\) and \(\mu (u)=\gamma .\) This gives \(\mu (W)=\{0\}.\) \(\square\)

Proposition 3.22

Let \(\mathbb {V}\) be a hypervector space over \(\mathbb {R},\) and let W be a subhyperspace of \(\mathbb {V}.\) If \(\tau\) is a linear functional on W,  then \(\tau\) can be extended to a linear functional \(\tau '\) on \(\mathbb {V}.\)

Proof

Let \(\mathcal {F}\) be the collection of \((S,\mu )\) such that \(W\subseteq S\) is a subhyperspace of \(\mathbb {V}\) and \(\mu :S\rightarrow \mathbb {R}\) is a linear functional with \(\mu (x)=\tau (x) \text { on }W .\) Since \((W,\tau )\in \mathcal {F},\,\,\mathcal {F}\ne \emptyset .\) Define a relation “\(\le\)” on \(\mathcal {F}\) by \((S_1,\mu _1)\le (S_2,\mu _2)\) if and only if \(S_1\subseteq S_2\) and \(\mu _2(x)=\mu _1(x)\) for all \(x\in S_1.\) Then \((\mathcal {F},\le )\) is a poset. Let \(C=\lbrace (S_{\alpha },\mu _{\alpha }):\alpha \in \varDelta \rbrace\) be a chain in \(\mathcal {F}.\) Since C is a chain, for any \(\alpha ,\beta \in \varDelta\), either \((S_{\alpha },\mu _{\alpha })\le (S_{\beta },\mu _{\beta })\) or \((S_{\beta },\mu _{\beta })\le (S_{\alpha },\mu _{\alpha }).\) Take \(S=\bigcup \lbrace S_{\alpha }:\alpha \in \varDelta \rbrace .\) Let \(u_1,u_2\in S\) and \(a,b\in \mathbb {R}.\) Then there exist \(\alpha ,\beta\) such that \(u_1\in S_{\alpha }\) and \(u_2\in S_{\beta } .\) We may assume that \(S_{\alpha }\subseteq S_{\beta }.\) Then \(u_1\in S_{\alpha } \subseteq S_{\beta }.\) Since \(S_{\beta }\) is a subhyperspace, \(au_1+bu_2\subseteq S_{\beta }\subseteq S.\) Hence, S is a subhyperspace of \(\mathbb {V}\). Since \(W\subseteq S_{\beta }\) for each \(\beta \in \varDelta ,\) \(W\subseteq S .\) Now for each \(u\in S,\) there exists \(\beta \in \varDelta\) such that \(u\in S_{\beta }.\) We define \(\mu :S\rightarrow \mathbb {R}\) by \(\mu (u)=\mu _{\beta }(u).\) Now if \(u\in S_{\alpha }\) and \(u\in S_{\beta } ,\) where \(\alpha ,\beta \in \varDelta ,\) we may assume that \((S_{\alpha },\mu _{\alpha })\le (S_{\beta },\mu _{\beta }).\) Then \(\mu _{\beta }(u)=\mu _{\alpha }(u) .\) So \(\mu\) is well-defined. Let \(u_1,u_2\in S .\) Then there exist \(\alpha ,\beta\) such that \(u_1\in S_{\alpha }\) and \(u_2\in S_{\beta } .\) Then \(u_1\in S_{\alpha } \subseteq S_{\beta }.\) Now \(\mu (u_1+u_2)= \mu _{\beta }(au_1+bu_2)=a\mu _{\beta }(u_1)+b\mu _{\beta }(u_2)=a\mu (u_1)+b\mu (u_2).\) Therefore \(\mu\) is a linear functional on S. Also, \(\tau (w)=\mu _{\alpha }(w)=\mu (w) ,\) for all \(w\in W.\) Thus \((S,\mu ) \in \mathcal {F}.\) Since for all \(\alpha \in \varDelta ,\) \(S_{\alpha }\subseteq S\) and \(\mu _{\alpha }(u)=\mu (u)\) for all \(u\in S_{\alpha },\) we have that \((S_{\alpha },\mu _{\alpha })\le (S,\mu ).\) Thus, C is bounded above. Since every non-empty chain in \(\mathcal {F}\) is bounded above, by Zorn’s lemma, \(\mathcal {F}\) has a maximal element, say \(( S, \tau _1).\) Suppose that \(S\subsetneq \mathbb {V} ,\) then there exists \(u_0\in \mathbb {V}{\setminus } S.\) Take \(S'=span(S\cup \lbrace u_0\rbrace ) .\) Then \(u\in S'\) implies there exist \(s\in S\) and \(a\in \mathbb {R}\) such that \(u\in s+au_0.\) Suppose \(u\in s+au_0\) and \(u\in s'+au'_0.\) Then

$$\begin{aligned} 0\in u-u \subseteq&s+au_0+ s'+au'_0 = s-s'+au_0-au'_0= s-s'+a(u_0-u'_0). \end{aligned}$$

So there exist \(u''\in u-u'\) and \(a''\in a-a'\) such that \(0\in u''+a''u_0.\) Then \(-u''=a''u_0.\) If \(a''=0 ,\) then \(a=a'\) and \(u=u' .\) If \(a''\ne 0 ,\) then \(u_0=-\frac{1}{a''}u''\) and so \(u_0\in S,\) a contradiction. So \(a=a'\) and \(u=u'.\) Hence, the representation is unique. Now we construct a linear functional \(\tau '\) on \(S'\) so that \(\tau '(u)=\tau _1(u)\) on S. For any \(u\in S',\) \(u\in s+au_0\) for unique \(s\in S,a\in \mathbb {R}.\) So we define \(\tau '(u)=\tau _1(s)+a\gamma ,\) where \(\gamma =\tau '(u_0)\in K.\) Clearly \(\tau '\) is linear and \(\tau '(u)=\tau _1(u)\) on \(S'\). But then \((S',\tau ')\in \mathcal {F},\) and \((S,\tau _1)<(S',\tau ') ,\) a contradiction. Therefore, \(S'=\mathbb {V}.\) \(\square\)

Proposition 3.23

Let \(\mathbb {V}\) be a hypervector space over \(\mathbb {R}, \,\,p:\mathbb {V}\rightarrow \mathbb {R}\) be a mapping such that \(\sup \{p(t):t\in v+w\} \le p(v)+p(w) \,\,\text {and} \,\,p(av)=ap(v)\) for all \(a>0\) and \(v,w\in \mathbb {V}.\) Let \(S\subsetneq \mathbb {V}\) be a subhyperspace of \(\mathbb {V}.\) If \(\mu\) is a linear functional on S such that for any \(v,w\in W,\) \(\sup \left\{ \mu (t):t\in v+w\right\} \le \sup \left\{ p(t):t\in v+w\right\} ,\) then for any \(u_0\in \mathbb {V}\setminus S,\) \(\mu\) can be extended to a linear functional \(\mu '\) on \(S'=S\oplus \mathbb {R} u_0\) such that for any \(t\in s+av,\) \(\mu '(t)\le \sup \left\{ p(t):t\in s+au_0\right\} .\)

Proof

Take \(S'=span(S\cup \lbrace u_0\rbrace ) .\) Then \(u\in S'\) implies there exist \(s\in S\) and \(a\in \mathbb {R}\) such that \(u\in s+au_0.\) As discussed in the proof of Proposition 3.22, we can see that the above representation is unique. Now we construct a linear functional \(\mu '\) on \(S'\) so that

  1. 1.

    \(\mu '(u)=\mu _1(u)\) on S

  2. 2.

    for any \(v,w\in S',\) \(\mu '(t)\le \sup \big \{p(t):t\in v-w\big \}\) for all \(t\in v-w.\)

For any \(u\in S',\) \(u\in s+au_0\) for unique \(s\in S,a\in \mathbb {R}.\) So we define \(\mu '(u)=\mu _1(s)+a\gamma ,\) where \(\gamma =\mu '(u_0).\) Clearly \(\mu '\) is linear and \(\mu '(u)=\mu _1(u)\) on \(S'\). We choose \(\gamma\) such that

$$\begin{aligned} \mu _1(u)= \mu _1(s)+a\gamma \le \sup \big \{p(t):t\in s+au_0\big \}. \end{aligned}$$
(3.1)

We note that for any \(s_1,s_2\in S,\)

$$\begin{aligned} \mu _1(s_1)+\mu _1(s_2)&=\mu _1(s_1+s_2)\le \sup \big \{p(t):t\in s_1+s_2\big \}\,\Big (\text {by hypothesis}\Big )\\&\le \sup \big \{p(t):t\in s_1+u_0-u_0+s_2\big \} \\&=\sup \big \{p(t):t\in v+w,v\in s_1+u_0,w\in s_2-u_0\big \}\\&\le \sup \big \{p(v)+p(w):v\in s_1+u_0,w\in s_2-u_0\big \}\\&\big ( \text {since}\, \sup \big \{p(t):t\in v+w\big \}\le p(v)+p(w)\big )\\&=\sup \big \{ p(v):v\in s_1+u_0\big \} +\sup \big \{p(w):w\in s_2-u_0\big \}. \end{aligned}$$

\(\text {That is,}\, \mu _1(s_1)+\mu _1(s_2)\le \sup \big \{p(t):t\in s_1+u_0\big \} +\sup \big \{p(t):t\in s_2-u_0\big \}.\) Then \(\mu _1(s_2)-\sup \big \{p(t):t\in s_2-u_0\big \}\le \sup \big \{p(t):t\in s_1+u_0\big \} -\mu _1(s_1).\) By fixing \(s_1\) and varying \(s_2\) in S,  we get \(\sup \big \{p(t):t\in s_1+u_0\big \} -\mu _1(s_1)\) is an upperbound for the set \(\Big \{\mu _1(s_2)-\sup \big \{p(t):t\in s_2-u_0\big \}:s_2\in S\Big \}\) for each \(s_1\in S ,\) and so

$$\begin{aligned} \sup \Big \{\mu _1(s_2)-\sup \big \{p(t):t\in s_2-u_0\big \}:s_2\in S\Big \}\le \sup \big \{p(t):t\in s_1+u_0\big \} -\mu _1(s_1) \end{aligned}$$

for each \(s_1\in S.\) Take \(\alpha =\sup \Big \{\mu _1(s_2)-\sup \big \{p(t):t\in s_2-u_0\big \}:s_2\in S\Big \}.\) Then \(\alpha \le \sup \big \{p(t):t\in s_1+u_0\big \} -\mu _1(s_1)\) for all \(s_1\in S.\) and so \(\alpha \le \inf \Big \{\sup \big \{p(t):t\in s_1+u_0\big \} -\mu _1(s_1):s_1\in S\Big \}=\beta\) (say). Choose \(\gamma\) so that \(\alpha \le \gamma \le \beta .\) Then for each \(s_1,s_2\in S,\)

$$\begin{aligned} \mu _1(s_2) -\sup \big \{p(t):t\in s_2-u_0\big \}\le \gamma \le \sup \big \{p(t):t\in s_1+u_0\big \} -\mu _1(s_1). \end{aligned}$$
(3.2)

With this \(\gamma ,\) we show that the inequality in (3.1) is satisfied. First, we show that \(\mu '(u)\le p(u)\) for all \(u\in S'.\) Let \(u\in S'.\) Then \(u\in s+au_0\) for unique \(s\in S\) and \(a\in \mathbb {R}.\)

  1. Case 1

    \(a=0 .\) Then \(\mu '(u)=\mu _1(s)+0\gamma =\mu _1(s)\le p(s)=p(u).\)

  2. Case 2

    \(a>0 .\) Then \(\mu '(u)=\mu _1(s)+a\gamma .\) Now from the RHS of the inequality (3.2), we get

    $$\begin{aligned} \gamma&\le \sup \left\{ p(t):t\in \frac{s}{a}+u_0\right\} -\mu _1\left( \frac{s}{a}\right) \\&= \sup \left\{ p\left( \frac{t}{a}\right) :t\in s+au_0 \right\} -\mu _1\left( \frac{s}{a}\right) \\&= \frac{1}{a}\sup \left\{ p(t):t\in s+au_0 \right\} -\mu _1\left( \frac{s}{a}\right) . \end{aligned}$$

    \(\text {That is},\, a\gamma \le \sup \left\{ p(t):t\in s+au_0 \right\} -a\mu _1\left( \frac{s}{a}\right) ,\) and so,

    $$\begin{aligned} \,\mu '(u)=\mu _1(s)+a\gamma \le \sup \left\{ p(t):t\in s+au_0 \right\} \le p(u). \end{aligned}$$
  3. Case 3

    \(a<0 .\) Then \(\mu '(u)=\mu _1(s)+a\gamma .\) Now from the LHS of the inequality (3.2), we get

    $$\begin{aligned} \gamma&\ge \mu _1\left( \frac{s}{-a}\right) -\sup \left\{ p(t):t\in \frac{s}{(-a)}-u_0\right\} \\&= \mu _1\left( \frac{s}{-a}\right) -\sup \left\{ p\left( \frac{t}{-a}\right) :t\in s+au_0 \right\} \\&= \mu _1\left( \frac{s}{(-a)}\right) -\frac{1}{(-a)}\sup \left\{ p(t):t\in s+au_0 \right\} . \end{aligned}$$

    \(\text {That is},\, -a\gamma \ge \mu _1\left( s\right) -\sup \left\{ p(t):t\in s+au_0 \right\} \text {, which implies, }\)

    $$\begin{aligned} a\gamma +\mu _1\left( s\right) \le \sup \left\{ p(t):t\in s+au_0 \right\} \end{aligned}$$

    \(\text {and so},\,\mu '(u)=\mu _1(u)+a\gamma \le \sup \left\{ p(t):t\in s+au_0 \right\} .\)

Therefore, in all the cases we get \(\mu '(u)\le \sup \left\{ p(t):t\in s+au_0 \right\} .\) \(\square\)

Definition 3.24

Let \(\mathbb {V}\) be a hypernormed space and \(\emptyset \ne Z\subseteq \mathbb {V},\) we define \(d(v,Z)=\inf \{d(v,z):z\in Z\}=\inf \big \lbrace \inf \{\Vert t\Vert :t\in v-z\}:z\in Z\big \rbrace\).

Theorem 3.25

Let W be a closed proper subhyperspace of \(\mathbb {V}\) and \(\epsilon >0 .\) Then there exists \(w_{\epsilon } \in \mathbb {V}\) with \(\Vert w_{\epsilon }\Vert \le 1\) such that \(\inf \{d(w,w_{\epsilon }):w\in W\}>1-\epsilon .\)

Proof

Let \(x\in \mathbb {V}\setminus W.\) Put \(k=\inf \{d(x,w):w\in W\}.\) If \(k=\inf \{d(x,w):w\in W\} =0,\) then for every \(n\in \mathbb {N},\) there exists \(w_n\) such that \(d(x,w_n)<\frac{1}{n}.\) Then \(\lim \limits _{n\rightarrow \infty }w_n=x,\) and since W is closed, \(x\in Y,\) a contradiction. So \(k>0.\) Let \(\epsilon >0.\) Then \(k(1+\epsilon )>k.\) Now \(k=\inf \{d(x,w):w\in W\}<k(1+\epsilon ).\) So there exists \(w_0\in W\) such that \(d(x,w_0)<k(1+\epsilon ) .\) That is,

$$\begin{aligned} \inf \{\Vert z\Vert :z\in x-w_0\}< k(1+\epsilon ). \end{aligned}$$

Then there exists \(z\in x-w_0\) such that \(k\le \Vert z\Vert <k(1+\epsilon ) .\) Let \(\gamma\) be such that \(/\gamma ^n/\le \Vert z\Vert \le \Vert z\Vert /\gamma ^{n+1}/ .\) Put \(\beta = \gamma ^n\) and \(w_{\epsilon }=\frac{1}{\beta }z.\) Then \(\Vert w_{\epsilon }\Vert \le 1 .\) Let \(w\in W.\) Now

$$\begin{aligned} \inf \{\Vert s\Vert :s\in w-w_{\epsilon }\}&=\inf \{\Vert s\Vert :s\in w-\frac{1}{\beta }z\}=\inf \left\{ \Vert s\Vert :s\in \dfrac{\beta w-z}{\beta }\right\} . \end{aligned}$$

Since \(z\in x-w_0 ,\) \(\beta w-z \subseteq \beta w-x-w_0 =w_0+\beta w-x,\) and so,

$$\begin{aligned} \inf \{\Vert s\Vert :s\in w-w_{\epsilon }\}&=\dfrac{1}{/\beta /}\inf \{\Vert s\Vert :s\in \beta w-z\}\\&\ge \dfrac{1}{/\beta /}\inf \{\Vert s\Vert :s\in w_0+\beta w-x\}. \end{aligned}$$

As \(w_0+\beta w\subseteq W,\)

$$\begin{aligned} \inf \{\Vert t\Vert :t\in w_0+\beta w-x\}=\inf \{\Vert t\Vert :t\in s-x,s\in w_0+\beta w\}\ge k. \end{aligned}$$

Therefore,

$$\begin{aligned} d(w,w_{\epsilon })= \inf \{\Vert s\Vert :s\in w-w_{\epsilon }\}&\ge \dfrac{1}{/\beta /}k\ge \dfrac{k}{1+\epsilon }>1-\epsilon . \end{aligned}$$

\(\square\)

4 \(BL\left( \mathbb {V},\mathbb {W}\right)\) in hypernormed spaces

In this section, we show that the set of all bounded linear transformations from \(\mathbb {V}\) to \(\mathbb {W},\) \(BL\left( \mathbb {V},\mathbb {W}\right)\) is a hypernormed space, and study some of its properties.

Definition 4.1

[3] Let \(( \mathbb {V}_1,\Vert \cdot \Vert _1)\) and \(( \mathbb {V}_2,\Vert \cdot \Vert _2)\) be two hypernormed spaces. Then \(\mu \in L(\mathbb {V}_1,\mathbb {V}_2)\) is said to be bounded if there exists \(M\in \mathbb {R}_{>0}\) such that \(\Vert \mu (v)\Vert _2\le M\Vert v\Vert\) for all \(v\in \mathbb {V}_1.\)

Proposition 4.2

[3] Let \(( \mathbb {V}_1,\Vert \cdot \Vert _1)\) and \(( \mathbb {V}_2,\Vert \cdot \Vert _2)\) be two hypernormed spaces. Then \(BL(\mathbb {V}_1,\mathbb {V}_2)\), the set of all bounded linear transformations is a subhyperspace of \(L(\mathbb {V}_1,\mathbb {V}_2).\)

Definition 4.3

[3] For \(\mu \in Bl(\mathbb {V}_1,\mathbb {V}_2),\) we define \(\Vert \mu \Vert\) as follows:

$$\begin{aligned} \Vert \mu \Vert =\sup \left\{ \dfrac{\Vert \mu (v)\Vert _2}{\Vert v\Vert _1}:v\in \mathbb {V}_1\setminus \{0\}\right\} . \end{aligned}$$

Remark 1

[3] For \(\mu \in BL(\mathbb {V}_1,\mathbb {V}_2),\)

  1. 1.

    \(\Vert \mu \Vert =\sup \left\{ \Vert \mu (v)\Vert _2:v\in \mathbb {V}, \Vert v\Vert _1= 1\right\} ,\)

  2. 2.

    \(\Vert \mu \Vert =\inf \left\{ M\in \mathbb {R}_{>0}:\Vert \mu (v)\Vert _2\le M\Vert v\Vert _1 \text { for all } v\in \mathbb {V}_1\right\} .\)

Proposition 4.4

[3] Let \((\mathbb {V},\Vert .\Vert _1)\) and \((\mathbb {W},\Vert .\Vert _2)\) be two hypernormed spaces over K and \(\mu :\mathbb {V}\rightarrow \mathbb {W}\) be a linear transformation. Then

  1. 1.

    \(\mu\) is bounded

  2. 2.

    \(\mu\) is continuous

are equivalent.

Proposition 4.5

Let \((\mathbb {V},\Vert .\Vert _1)\) and \((\mathbb {W},\Vert .\Vert _2)\) be two hypernormed spaces over K and \(\mu :\mathbb {V}\rightarrow \mathbb {W}\) be a linear transformation. Then

$$\begin{aligned} \Vert \mu \Vert = \sup \left\{ \Vert \mu (v)\Vert _2:v\in \mathbb {V}, \Vert v\Vert _1\le 1\right\} . \end{aligned}$$

Proof

Take \(A= \sup \left\{ \dfrac{ \Vert \mu (v)\Vert _2}{\Vert v\Vert _1}:0\ne v\in \mathbb {V}\right\}\) and \(B=\sup \left\{ \Vert \mu (v)\Vert _2:v\in \mathbb {V}, \Vert v\Vert _1\le 1\right\}\). Now \(\dfrac{ \Vert \mu (v)\Vert _2}{\Vert v\Vert _1}\le A\) for all \(0 \ne v\in \mathbb {V} .\) For \(\Vert v\Vert _1\le 1,\) \(\Vert \mu (v)\Vert _2\le \dfrac{ \Vert \mu (v)\Vert _2}{\Vert v\Vert _1}\le A .\) That is \(\Vert \mu (v)\Vert _2\le A .\) So, \(B \le A.\) Suppose that \(B<A\). Then B is not a upper bound of the set \(\left\{ \dfrac{ \Vert \mu (v)\Vert _2}{\Vert v\Vert _1}:0\ne v\in \mathbb {V}\right\} .\) Then there exists \(v\in \mathbb {V}\) such that \(\dfrac{ \Vert \mu (v)\Vert _2}{\Vert v\Vert _1}>B.\) Now we can choose \(\beta \in K\) such that \(/\beta /=\frac{1}{\Vert v\Vert } .\) Now \(\Vert \beta v\Vert _1\le 1.\) Then \(B\ge \Vert \mu (\beta v)\Vert _2 =/\beta / \Vert \mu (v)\Vert =\frac{\Vert \mu (v)\Vert }{\Vert v\Vert }>B,\) a contradiction. \(\square\)

Theorem 4.6

[16] Let \(\mathbb {V}\) be a weak hypervector space and W be a closed subhyperspace of \(\mathbb {V}.\) Then the map \(\Vert \cdot \Vert :\dfrac{\mathbb {V}}{W}\rightarrow \mathbb {R}\) defined by

$$\begin{aligned} \Vert x+W\Vert =\inf \left\{ \sup \{\Vert t\Vert :t\in x+w\}:w\in W\right\} \end{aligned}$$

is a hypernorm on \(\dfrac{\mathbb {V}}{W}.\)

Proposition 4.7

If Z is a closed subhyperspace of \(\mathbb {V},\) the quotient map Q from \(\mathbb {V}\) to \(\dfrac{ \mathbb {V}}{Z}\) is continuous and open.

Proof

For \(v\in \mathbb {V},\)

$$\begin{aligned} \Vert Q(v)\Vert =\Vert v+Z\Vert =&\inf \left\{ \sup \{\Vert t\Vert :t\in v+z:z\in Z\}\right\} \\ \le&\left\{ \Vert t\Vert :t\in v+0\right\} =\Vert v\Vert . \end{aligned}$$

That is, \(\Vert Q(v)\Vert =\Vert v\Vert\) for all \(v\in \mathbb {V}.\) Therefore, Q is continuous. As \(\Vert v+Z\Vert < (1+\epsilon )\Vert v+Z\Vert ,\) there exists \(z_0\in Z\) such that \(\sup \left\{ \Vert t\Vert :t\in v+z_0\right\} <(1+\epsilon ) \Vert v+Z\Vert .\) Now \(Q(v+z_0)=Q(v)+Q(z_0)=v+Z+z_0+Z=v+Z.\) Now take \(\gamma =1+\epsilon .\) Then \(\Vert v+z_0\Vert \le \gamma \Vert v+Z\Vert .\) Thus, by Theorem 3.17, Q is an open map. \(\square\)

For \(\mu _1,\mu _2\in BL(\mathbb {V},\mathbb {W}),\) we denote,

$$\begin{aligned} \Vert (\mu _1+\mu _2)(x)\Vert =\sup \left\{ \Vert z\Vert _2:z\in \mu _1(x)+ \mu _2(x)\right\} \end{aligned}$$

and

$$\begin{aligned} \Vert \mu _1+\mu _2\Vert =\sup \left\{ \dfrac{\Vert (\mu _1+\mu _2)(x)\Vert }{\Vert x\Vert _1}:0\ne x\in \mathbb {V}\right\} . \end{aligned}$$

Proposition 4.8

[15] Let \(\{v_n\}\) and \(\{w_n\}\) be two convergent sequences such that \(\lim \limits _{n\rightarrow \infty }v_n=v\) and \(\lim \limits _{n\rightarrow \infty }w_n=w\). Then for each \(t\in v+w ,\) there exists \(t_n\in v_n+w_n\) such that \(\lim \limits _{n\rightarrow \infty }t_n=t.\)

Proposition 4.9

Let \((\mathbb {V}_1,\Vert .\Vert _1)\) and \((\mathbb {V}_2,\Vert .\Vert _2)\) be two weak hypernormed spaces over K and \(BL(\mathbb {V}_1,\mathbb {V}_2)\) be the set of all weak bounded linear transformations from \(\mathbb {V}_1\) to \(\mathbb {V}_2.\) Then \(BL(\mathbb {V}_1,\mathbb {V}_2)\) is a hypernormed space.

Proof

For any \(\mu \in BL(\mathbb {V}_1,\mathbb {V}_2),\) consider \(\Vert \mu \Vert = \sup \left\{ \dfrac{ \Vert \mu (v)\Vert _2}{\Vert v\Vert _1}:0\ne v\in \mathbb {V}_1\right\}\). Clearly, for any \(\mu \in BL(\mathbb {V}_1,\mathbb {V}_2),\) we have \(\Vert \mu \Vert \ge 0.\) If \(\mu =0\) then \(\Vert \mu \Vert =0\). Suppose that \(\Vert \mu \Vert =0 .\) Then \(\sup \left\{ \dfrac{ \Vert \mu (v)\Vert _2}{\Vert v\Vert _1}:0\ne v\in \mathbb {V}_1\right\} =0 .\) This implies that \(\dfrac{ \Vert \mu (v)\Vert _2}{\Vert v\Vert _1}\le 0\) for all \(0\ne v\in \mathbb {V}_1\) implies that \(\Vert \mu (v)\Vert _2\le 0\) for all \(v\in \mathbb {V}_1.\) Then \(\Vert \mu (v)\Vert _2= 0\) for all \(v\in \mathbb {V}_1\) implies that \(\mu (v) =0\) for all \(v\in \mathbb {V}_1.\) Hence \(\mu =0 .\) Now for any \(v\in \mathbb {V}_1\) and \(\alpha \in K,\)

$$\begin{aligned} \Vert (\alpha \mu )(v)\Vert _2 =\Vert \alpha \mu (v)\Vert _2=/\alpha / \Vert \mu (v)\Vert _2 \le /\alpha / \Vert \mu \Vert \Vert v\Vert _1 \,\,\text {for all}\,\, v\in \mathbb {V}_1. \end{aligned}$$

That is,

$$\begin{aligned} \Vert \alpha \mu \Vert \le /\alpha / \Vert \mu \Vert . \end{aligned}$$
(4.1)

Suppose \(\alpha =0\). Then \(\alpha \mu =0,\) and so, \(\Vert \alpha \mu \Vert =0.\) Assume that \(\alpha \ne 0.\) Then \(\dfrac{1}{\alpha }\in K.\) Replace \(\alpha\) by \(\dfrac{1}{\alpha }\) and \(\mu\) by \(\alpha \mu\) in inequality (4.1). Now \(\Vert \dfrac{1}{\alpha }(\alpha \mu )\Vert \le /\dfrac{1}{\alpha }/ \Vert \alpha \mu \Vert ,\) which implies, \(/\alpha /\Vert \mu \Vert \le \Vert \alpha \mu \Vert .\) Thus \(/\alpha /\Vert \mu \Vert = \Vert \alpha \mu \Vert .\) Let \(\mu _1,\mu _2\in BL(\mathbb {V}_1,\mathbb {V}_2) .\) Then for each \(v\in \mathbb {V}_1,\) \((\mu _1+ \mu _2)(v)=\left\{ z:z\in \mu _1(v)+ \mu _2(v)\right\} .\) For each \(z\in \mu _1(v)+ \mu _2(v),\) we have,

$$\begin{aligned} \sup \left\{ \Vert z\Vert _2:z\in \mu _1(v)+ \mu _2(v)\right\}&\le \Vert \mu _1(v)\Vert _2+ \Vert \mu _2(v)\Vert _2\\&\le \Vert \mu _1\Vert \Vert v\Vert _1+ \Vert \mu _2\Vert \Vert v\Vert _1\\&=(\Vert \mu _1\Vert + \Vert \mu _2\Vert )\Vert v\Vert _1. \end{aligned}$$

Then for all \(0\ne v\in \mathbb {V}_1\), \(\Vert (\mu _1+\mu _2)(v)\Vert \le (\Vert \mu _1\Vert + \Vert \mu _2\Vert )\Vert v\Vert _1,\) which implies,

$$\begin{aligned} \dfrac{\Vert (\mu _1+\mu _2)(v)\Vert }{\Vert v\Vert _1}\le \Vert \mu _1\Vert + \Vert \mu _2\Vert \end{aligned}$$

and so, \(\sup \left\{ \dfrac{\Vert (\mu _1+\mu _2)(v)\Vert }{\Vert v\Vert _1}:0\ne v\in \mathbb {V}_1\right\} \le \Vert \mu _1\Vert + \Vert \mu _2\Vert .\) Thus, \(\Vert \mu _1+\mu _2\Vert \le \Vert \mu _1\Vert + \Vert \mu _2\Vert .\) Hence \(( BL(\mathbb {V}_1,\mathbb {V}_2),\Vert \cdot \Vert )\) is a hypernormed space. \(\square\)

We denote \(\Vert (\mu _1-\mu _2)(v)\Vert =\inf \left\{ \Vert z\Vert _2:z\in \mu _1(v)- \mu _2(v)\right\} =d(\mu _1(v),\mu _2(v))\) and

$$\begin{aligned} \Vert \mu _1-\mu _2 \Vert = \inf \left\{ \dfrac{ \Vert (\mu _1-\mu _2)(v)\Vert }{\Vert v\Vert }:0\ne v\in V \right\} . \end{aligned}$$

Also,

$$\begin{aligned} \overline{d}(\mu _1,\mu _2)=\Vert \mu _1-\mu _2\Vert = \inf \left\{ \dfrac{d(\mu _1(v),\mu _2(v))}{\Vert v\Vert }:0\ne v\in V \right\} \end{aligned}$$

is a metric on \(BL(\mathbb {V},\mathbb {W}).\)

Definition 4.10

A hypernormed space \((\mathbb {V},\Vert \cdot \Vert )\) is said to be a hyper-Banach space if \(\mathbb {V}\) is complete with respect to the hypernorm \(\Vert \cdot \Vert .\)

Proposition 4.11

If \((\mathbb {W},\Vert .\Vert _2)\) is a hyper-Banach space, then \(BL(\mathbb {V},\mathbb {W})\) is also a hyper-Banach space.

Proof

Let \(\{\mu _n \}\) be a Cauchy sequence in \(( BL(\mathbb {V},\mathbb {W}),\Vert \cdot \Vert ).\) For any \(x\in \mathbb {V}\), we show that \(\mu _n(x)\) is a Cauchy sequence. Since \(\{\mu _n \}\) is a Cauchy sequence, for \(\dfrac{\epsilon }{\Vert x\Vert _1+1}>0\) there exists \(N\in \mathbb {N}\) such that \(\Vert \mu _n-\mu _m\Vert <\dfrac{\epsilon }{\Vert x\Vert _1+1}\) for all \(m>n>N.\) Now for \(m>n>N,\) \(\Vert \mu _n(v)-\mu _m(v)\Vert \le \Vert \mu _n-\mu _m\Vert \Vert v\Vert _1<\dfrac{\epsilon }{\Vert v\Vert _1+1} \Vert v\Vert _1<\epsilon .\) Hence \(\{\mu _n(v)\}\) is a Cauchy sequence in \(\mathbb {W},\) and since \(\mathbb {W}\) is complete, \(\{\mu _n(v)\}\) converges, for each \(v\in \mathbb {V}.\) Define \(\mu :\mathbb {V}\rightarrow \mathbb {W}\) as \(\mu (v) =\lim \limits _{n\rightarrow \infty }\mu _n(v) .\) Let \(u,v\in \mathbb {V}, \alpha \in K.\)

$$\begin{aligned} \mu (u+v)&= \lim \limits _{n\rightarrow \infty }\mu _n(u+v) \subseteq \lim \limits _{n\rightarrow \infty }\mu _n(u)+\lim \limits _{n\rightarrow \infty }\mu _n(v)(\text {by Proposition 4.8})\\&=\mu (u)+\mu (v). \end{aligned}$$

Also, \(\mu (\alpha u)= \lim \limits _{n\rightarrow \infty }\mu _n(\alpha u)= \lim \limits _{n\rightarrow \infty }\alpha \mu _n(u)=\alpha \lim \limits _{n\rightarrow \infty }\mu _n(u)=\alpha \mu (v).\) Hence \(\mu\) is linear. Since \(\left\{ \mu _n \right\}\) is a Cauchy sequence, by Proposition 3.16, \(\left\{ \mu _n \right\}\) is bounded. So there exist \(M>0\) such that \(\Vert \mu _n\Vert \le M\) for all \(n\in \mathbb {N}.\) Then,

$$\begin{aligned} \Vert \mu (u)\Vert =\Vert \lim \limits _{n\rightarrow \infty }\mu _n( u)\Vert _2\le \lim \limits _{n\rightarrow \infty }\Vert \mu _n\Vert \Vert u\Vert _1=\Vert u\Vert _1\lim \limits _{n\rightarrow \infty }\Vert \mu _n\Vert \le \Vert u\Vert _1 M. \end{aligned}$$

Hence \(\mu \in BL(\mathbb {V},\mathbb {W}).\) Now to show, \(\Vert \mu _n-\mu \Vert \rightarrow 0.\) Let \(\epsilon >0.\) Since \(\{\mu _n\}\) is Cauchy, for \(\frac{\epsilon }{2} >0,\) there exists \(N_1\in \mathbb {N}\) such that \(\Vert \mu _n -\mu _m\Vert <\dfrac{\epsilon }{2}\) for all \(n>m>N_1.\) Now, for \(n>m>N_1,\)

$$\begin{aligned} \Vert \mu _n -\mu _m\Vert =\sup \left\{ \dfrac{\inf \left\{ \Vert z\Vert _2:z\in \mu _n(u)- \mu _m(u)\right\} }{\Vert u\Vert _1}:0\ne u\in \mathbb {V}\right\} <\epsilon . \end{aligned}$$

For each \(0\ne u\in \mathbb {V},\) \(\dfrac{ \inf \left\{ \Vert z\Vert _2:z\in \mu _n(u)- \mu _m(u)\right\} }{\Vert u\Vert _1}<\epsilon \,\,\text {for all }\,\,0\ne u\in \mathbb {V}.\) Fixing m and letting \(n\rightarrow \infty ,\) \(\dfrac{ \inf \left\{ \Vert z\Vert _2:z\in \mu (u)- \mu _m(u)\right\} }{\Vert u\Vert _1}<\epsilon \,\,\text {for all }\,\,0\ne u\in \mathbb {V}.\) So, \(\sup \left\{ \dfrac{\inf \left\{ \Vert z\Vert _2:z\in \mu (v)- \mu _m(v)\right\} }{\Vert v\Vert _1}:0\ne v\in \mathbb {V}\right\} <\epsilon .\) That is, \(\Vert \mu _n-\mu _m \Vert <\epsilon .\) Hence, \(\Vert \mu _n-\mu _m \Vert\) as \(m\rightarrow \infty .\) Thus, \(BL(\mathbb {V},\mathbb {W})\) is a hyper-Banach space. \(\square\)

Theorem 4.12

Let \((\mathbb {V},\Vert \cdot \Vert _1)\) and \((\mathbb {W},\Vert \cdot \Vert _2)\) be hyper-Banach spaces over a hyperfield K and \(\{ \mu _n\}\) be a sequence of continuous linear transformations from \(\mathbb {V}\) to \(\mathbb {W}\) such that \(\Vert \mu _n(u)\Vert _2\) is a bounded sequence for all \(u\in \mathbb {V}.\) Then the sequence \(\{\Vert \mu _{n}\Vert \}\) is bounded.

Proof

For each \(m\in \mathbb {N},\) we define

$$\begin{aligned} X_m=\left\{ u\in \mathbb {V}:\Vert \mu _n(u)\Vert _2\le m \,\,\text {for all}\,\,n\in \mathbb {N} \right\} =\bigcap \limits _{n=1}^{\infty }\mu _{n}^{-1}\left( \overline{B(u_0,m)}\right) . \end{aligned}$$

Then \(\mathbb {V}=\bigcup \limits _{m=1}^{\infty } X_{m}.\) Now by Baire’s category theorem for metric spaces, at least one \(X_m\) contains a sphere. Let \(u_0\) be an interior point of \(X_m\). Then there exists \(r>0\) such that \(\overline{B(u_0,r)}\subseteq X_m.\) That means for any \(u\in \overline{B(u_0,r)},\) \(\inf \left\{ \Vert t\Vert _1:t\in u-u_0 \right\} \le r,\) and \(\Vert \mu _n(u)\Vert _2\le m \,\,\text {for all}\,\, n\in \mathbb {N}.\)

For \(0\ne v\in \mathbb {V}\) with \(\Vert v\Vert _1>r,\) we can find \(\gamma \in K\) such that \(/\gamma /= \dfrac{r}{2\Vert v\Vert _1} .\)

Now \(\gamma v\in \mathbb {V}\) and \(\Vert \gamma v\Vert _1= \dfrac{r}{2}<r.\) Then \(\gamma v\in \gamma v+u_0-u_0 .\) So there is \(t\in \gamma v+u_0\) such that \(\gamma v\in t-u_0.\) Now \(\inf \{\Vert t'\Vert _1:t'\in t-u_0\}\le \Vert \gamma v\Vert _1< r\) and so \(t\in \overline{B(u_0,r)}\) and \(\Vert \mu _n(t)\Vert _2\le m \,\,\text {for all}\,\, n\in \mathbb {N}.\)

Since \(t\in \gamma v+u_0\) we get \(\mu _n(t)\in \gamma \mu (v)+\mu (u_0) ,\) and so,

$$\begin{aligned} \Vert \gamma \mu _n(v)\Vert _2-\Vert \mu _n(u_0)\Vert _2&\le \inf \{\Vert s\Vert _1:s\in \mu _n(\gamma v)+\mu _n(u_0)\}\\&\le \Vert \mu _n(t)\Vert _2\le m \,\,\text {for all} \,\,n\in \mathbb {N} . \end{aligned}$$

Therefore, \(\Vert \mu _n(v)\Vert _2\le \dfrac{ m+\Vert \mu _n(u_0)\Vert _2}{ /\gamma /}=\dfrac{(m+\Vert \mu _n(u_0)\Vert _2)2\Vert v\Vert _1}{r}\) for all \(n\in \mathbb {N}.\) Since \(\{\Vert \mu _n(u_0)\Vert _2\}\) is a bounded sequence, then there exists \(m'>0\) such that \(\Vert \mu _n(u_0) \Vert _2\le m'.\) This gives, \(\Vert \mu _n(v)\Vert _2<\dfrac{2(m+m')\Vert v\Vert _1}{r}=M\Vert v\Vert _1(\text {say}).\) This implies,

$$\begin{aligned} \sup \left\{ \dfrac{ \Vert \mu _n(v)\Vert _2}{\Vert v\Vert _1} :0\ne v\in \mathbb {V}\right\} \le M \end{aligned}$$

which gives \(\Vert \mu _n\Vert \le M\) for all \(n\in \mathbb {N}.\)

Thus, \(\left\{ \Vert \mu _n\Vert \right\}\) is a bounded sequence. \(\square\)

The following result is an immediate consequence of Theroem 4.12.

Corollary 4.13

Let \((\mathbb {V},\Vert \cdot \Vert )\) be a hyper-Banach space over a hyperfield K such that the hyperabsolute value map defined on K is onto and \(\{ \mu _n\}\) be a sequence of continuous linear functionals such that \(\left\{ /\mu _n(u)/\right\}\) is a bounded sequence for all \(u\in \mathbb {V}.\) Then the sequence \(\{\Vert \mu _{n}\Vert \}\) is bounded.

5 Conclusion

In this paper, we have proved that the hypernorm in a hypervector space is continuous. The necessary and sufficient condition is obtained for a linear transformation between two hypernormed spaces to be open. In a hypernormed space \(\mathbb {V},\) it was proved that if W is an open subhyperspace and E is any arbitrary subset, then \(W+E\) is open. We have extended the linear functional \(\mu\) on a subhyperspace \(\mathbb {W}\) of a real hypervector space \(\mathbb {V}\) to a linear functional \(\mu ^{'}\) on \(\mathbb {V}.\)

Some open questions: As a future scope, one can attempt the following open problems in hypernormed spaces:

  1. 1.

    The hyperoperation \(+\) on a hypervector space \(\mathbb {V}\) is continuous or not?

  2. 2.

    An onto bounded linear transformation between two hyper-Banach spaces is open or not?

  3. 3.

    If a bounded linear transformation \(\mu\) between two hypernormed spaces is bijective, then \(\mu ^{-1}\) is a bounded linear transformation or not?