Skip to main content
Log in

Fractal surfaces in Hölder and Sobolev spaces

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

Following the construction of fractal surfaces due to Ruan and Xu (Bulletin of the Australian Mathematical Society 91:435–446, 2015) and the theory of \(\alpha\)-fractal functions due to Navascués (Zeitschrift fur Analysis und ihre Anwendungen 25:401–418, 2005), we show that bivariate \(\alpha\)-fractal functions (or fractal surfaces) belong to the well-known Hölder spaces and Sobolev spaces under certain assumptions on the base function and scaling function used in the construction. We also define a fractal operator on the Hölder spaces and then study some properties of it. In the end, we provide an alternate approach for defining a fractal operator on Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availibility

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adams, R.A., and J.J. Fournier. 2003. Sobolev spaces. Elsevier.

    Google Scholar 

  2. Agrawal, V., M. Pandey, and T. Som. 2023. Box dimension and fractional integrals of multivariate fractal interpolation functions. Mediterranean Journal of Mathematics 20 (3): 164.

    Google Scholar 

  3. Agrawal, V., T. Som, and S. Verma. 2023. A note on stability and fractal dimension of bivariate \(\alpha\)-fractal functions. Numerical Algorithms 93: 1811–1833.

    MathSciNet  Google Scholar 

  4. Agrawal, V., and T. Som. 2022. \(L^{p}\) approximation using fractal functions on the Sierpiński gasket. Results Math 77 (2): 1–17.

    MathSciNet  Google Scholar 

  5. Agrawal, V., and T. Som. 2021. Fractal dimension of \(\alpha\)-fractal function on the Sierpiński Gasket. European Physical Journal Special Topics 230 (21): 3781–3787.

    ADS  Google Scholar 

  6. Agrawal, E., and S. Verma. 2023. Dimensional study of COVID-19 via fractal functions. European Physical Journal Special Topics 232: 1061–1070.

    ADS  Google Scholar 

  7. Amit, V. Basotia, and A. Prajapati. 2023. Non-stationary \(\phi\)-contractions and associated fractals. The Journal of Analysis, 31(2): 1375–1391.

    MathSciNet  Google Scholar 

  8. Barnsley, M.F. 1988. Fractal Everywhere. Orlando: Academic Press.

    Google Scholar 

  9. Barnsley, M.F. 1986. Fractal functions and interpolation. Constructive Approximation 2: 303–332.

    MathSciNet  Google Scholar 

  10. Chandra, S., and S. Abbas. 2021. The calculus of bivariate fractal interpolation surfaces. Fractals 29 (3): 2150066.

    ADS  Google Scholar 

  11. Chandra, S., and S. Abbas. 2022. Analysis of fractal dimension of mixed Riemann-Liouville integral. Numerical Algorithms 91 (3): 1021–1046.

    MathSciNet  Google Scholar 

  12. Chandra, S., and S. Abbas. 2022. Box dimension of mixed Katugampola fractional integral of two-dimensional continuous functions. Fractional Calculus and Applied Analysis 25 (3): 1022–1036.

    MathSciNet  Google Scholar 

  13. Chandra, S., and S. Abbas. 2022. On fractal dimensions of fractal function using functions spaces. Bulletin of the Australian Mathematical Society 106 (3): 470–480.

    MathSciNet  Google Scholar 

  14. Chandra, S., S. Abbas, and S. Verma. 2023. Bernstein super fractal interpolation function for countable data systems. Numerical Algorithms 92 (4): 2457–2481.

    MathSciNet  Google Scholar 

  15. Dalla, L. 2002. Bivariate fractal interpolation functions on grids. Fractals 10 (1): 53–58.

    MathSciNet  Google Scholar 

  16. Easwaramoorthy, D., A. Gowrisankar, A. Manimaran, S. Nandhini, L. Rondoni, and S. Banerjee. 2021. An exploration of a fractal-based prognostic model and comparative analysis for the second wave of COVID-19 diffusion. Nonlinear Dynamics 106 (2): 1375–1395.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Evans, L.C. 1998. Partial Differential Equations, American Mathematical Society. First Ed.

  18. Falconer, K.J. 1999. Fractal Geometry: Mathematical Foundations and Applications. New York: John Wiley Sons Inc.

    Google Scholar 

  19. Geronimo, J.S., and D. Hardin. 1993. Fractal interpolation surfaces and a related 2-D multiresolution analysis. Journal of Mathematical Analysis and Applications 176 (2): 561–586.

    MathSciNet  Google Scholar 

  20. Hutchinson, J.E. 1981. Fractals and self-similarity. Indiana University Mathematics Journal 30: 713–747.

    MathSciNet  Google Scholar 

  21. Jha, S., and S. Verma. 2021. Dimensional analysis of \(\alpha\)-fractal functions. Results in Mathematics 76 (4): 1–24.

    MathSciNet  Google Scholar 

  22. Małysz, R. 2006. The Minkowski dimension of the bivariate fractal interpolation surfaces. Chaos, Solitons & Fractals 27 (5): 1147–1156.

    ADS  MathSciNet  Google Scholar 

  23. Jha, S., S. Verma, and A.K.B. Chand. 2022. Non-stationary zipper \(\alpha\)-fractal functions and associated fractal operator. Fractional Calculus and Applied Analysis 25 (4): 1527–1552.

    MathSciNet  Google Scholar 

  24. Massopust, P.R. 1997. Fractal functions and their applications. Chaos, Solitons & Fractals 8 (2): 171–190.

    ADS  MathSciNet  Google Scholar 

  25. Massopust, P.R. 2016. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed. Academic Press.

    Google Scholar 

  26. Massopust, P.R. 1990. Fractal surfaces. Journal of Mathematical Analysis and Applications 151 (1): 275–290.

    MathSciNet  Google Scholar 

  27. Massopust, P.R. 2016. Local Fractal Functions in Besov and Triebel-Lizorkin Spaces. Journal of Mathematical Analysis and Applications 436: 393–407.

    MathSciNet  Google Scholar 

  28. Mauldin, R.D., and S.C. Williams. 1986. On the Hausdorff dimension of some graphs. Transactions of the American Mathematical Society 298: 789–803.

    MathSciNet  Google Scholar 

  29. Navascués, M.A. 2005. Fractal polynomial interpolation. Zeitschrift fur Analysis und ihre Anwendungen 25 (2): 401–418.

    MathSciNet  Google Scholar 

  30. Navascués, M.A. 2010. Fractal approximation. Complex Analysis and Operator Theory 4 (4): 953–974.

    MathSciNet  Google Scholar 

  31. Navascués, M.A., and S. Verma. 2023. Non-stationary \(\alpha\)-fractal surfaces. Mediterranean Journal of Mathematics 20 (1): 48.

    MathSciNet  Google Scholar 

  32. Nussbaum, R.D., A. Priyadarshi, and S.V. Lunel. 2012. Positive operators and Hausdorff dimension of invariant sets. Transactions of the American Mathematical Society 364 (2): 1029–1066.

    MathSciNet  Google Scholar 

  33. Prasad, S.A., and S. Verma. 2023. Fractal interpolation functions on products of the Sierpiński gaskets. Chaos, Solitons & Fractals 166: 112988.

    Google Scholar 

  34. Prithvi, B.V., and S.K. Katiyar. 2022. Interpolative operators: Fractal to multivalued fractal. Chaos, Solitons & Fractals 164: 112449.

    MathSciNet  Google Scholar 

  35. Ri, S. 2018. A new idea to construct the fractal interpolation function. Indagationes Mathematicae 29 (3): 962–971.

    MathSciNet  Google Scholar 

  36. Ruan, H.J., W.Y. Su, and K. Yao. 2009. Box dimension and fractional integral of linear fractal interpolation functions. Journal of Approximation Theory 161 (1): 187–197.

    MathSciNet  Google Scholar 

  37. Ruan, H.J., and Q. Xu. 2015. Fractal interpolation surfaces on Rectangular Grids. Bulletin of the Australian Mathematical Society 91: 435–446.

    MathSciNet  Google Scholar 

  38. Sahu, A., and A. Priyadarshi. 2020. On the box-counting dimension of Graphs of harmonic functions on the Sierpiński gasket. Journal of Mathematical Analysis and Applications 487 (2): 124036.

    MathSciNet  Google Scholar 

  39. Verma, S. 2021. Hausdorff dimension and infinitesimal similitudes on complete metric spaces, arXiv preprint, arXiv:2101.07520.

  40. Verma, S., and S. Jha. 2022. A study on fractal operator corresponding to non-stationary fractal interpolation functions, 50–66. In Frontiers of Fractal Analysis Recent Advances and Challenges: CRC Press.

  41. Verma, S., and P.R. Massopust. 2022. Dimension preserving approximation. Aequationes mathematicae 96 (6): 1233–1247.

    MathSciNet  Google Scholar 

  42. Verma, M., A. Priyadarshi, and S. Verma. 2023. Analytical and dimensional properties of fractal interpolation functions on the Sierpiński gasket. Fractional Calculus and Applied Analysis 26 (3): 1294–1325.

    MathSciNet  Google Scholar 

  43. Verma, M., and A. Priyadarshi. 2023. Dimensions of new fractal functions and associated measures, Numerical Algorithms 1-30.

  44. Verma, M., and A. Priyadarshi. 2023. Graphs of continuous functions and fractal dimension. Chaos, Solitons & Fractals 172: 113513.

    MathSciNet  Google Scholar 

  45. Verma, M., A. Priyadarshi, and S. Verma. 2023. Vector-valued fractal functions: fractal dimension and fractional calculus. Indagationes Mathematicae 34 (4): 830–853.

    MathSciNet  Google Scholar 

  46. Verma, S., and P. Viswanathan. 2020. Bivariate functions of bounded variation: Fractal dimension and fractional integral. Indagationes Mathematicae 31: 294–309.

    MathSciNet  Google Scholar 

  47. Verma, S., and P. Viswanathan. 2020. A fractal operator associated with bivariate fractal interpolation functions on rectangular grids. Results in Mathematics 75 (1): 28.

    MathSciNet  Google Scholar 

  48. Verma, S., and P. Viswanathan. 2020. Parameter identification for a class of bivariate fractal interpolation functions and constrained approximation. Numerical Functional Analysis and Optimization 41 (9): 1109–1148.

    MathSciNet  Google Scholar 

  49. Xie, H., and H. Sun. 1997. The study on bivariate fractal interpolation functions and creation of fractal interpolated surfaces. Fractals 5 (04): 625–634.

    MathSciNet  Google Scholar 

  50. Zhao, N. 1996. Construction and application of fractal interpolation surfaces. The Visual Computer 12 (3): 132–146.

    Google Scholar 

Download references

Funding

The first author thanks IIIT Allahabad (Ministry of Education, India) for financial support in the form of a Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Saurabh Verma.

Ethics declarations

Conflict of interest

We declare that we do not have any conflict of interest.

Additional information

Communicated by S Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, E., Verma, S. Fractal surfaces in Hölder and Sobolev spaces. J Anal 32, 1161–1179 (2024). https://doi.org/10.1007/s41478-023-00672-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00672-6

Keywords

Mathematics Subject Classification

Navigation