Skip to main content
Log in

Kantorovich inequality for positive operators on quaternionic Hilbert spaces

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

In this paper, we prove some inequalities for bounded positive operators on quaternionic Hilbert spaces. We follow the Kantorovich inequalities in operators inequalities in case of complex Hilbert spaces and obtain similar inequalities in the quaternionic setting. The results are applied to some operator version of Hölder-McCarthy inequalities and its reverse for positive quaternionic operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G., and J. von Neumann. 1936. The logic of quantum mechanics. Annals of Mathematics 37: 823–843.

    Article  MathSciNet  Google Scholar 

  2. Adler, S. 1995. Quaternionic quantum field theory. New York: Oxford University Press.

    Book  Google Scholar 

  3. Colombo, F., J. Gantner, and D.P. Kimsey. 2018. Spectral theory on the S-spectrum for quaternionic operators 270. Cham: Birkhäuser.

    Book  Google Scholar 

  4. Alpay, D., F. Colombo, J. Gantner, and I. Sabadini. 2015. A new resolvent equation for the S-functional calculus. Journal of Geometric Analysis 25: 1939–1968.

    Article  MathSciNet  Google Scholar 

  5. Colombo, F., and I. Sabadini. 2009. On some properties of the quaternionic functional calculus. Journal of Geometric Analysis 19 (3): 601–627.

    Article  MathSciNet  Google Scholar 

  6. Colombo, F., and I. Sabadini. 2010. On the formulations of the quaternionic functional calculus. Journal of Geometry and Physics 60 (10): 1490–1508.

    Article  ADS  MathSciNet  Google Scholar 

  7. Alpay, D., F. Colombo, and I. Sabadini. 2016. Slice hyperholomorphic schur analysis, operator theory: advances and applications, 256. Cham: Birkhäuser/Springer.

    Book  Google Scholar 

  8. Alpay, D., F. Colombo, T. Qian, and I. Sabadini. 2016. The \(H^{\infty }\) functional calculus based on the \(S\)-spectrum for quaternionic operators and for n-tuples of noncommuting operators. Journal of Functional Analysis 271 (6): 1544–1584.

    Article  MathSciNet  Google Scholar 

  9. Colombo, F., and J. Gantner. 2018. Fractional powers of quaternionic operators and Kato’s formula using slice hyperholomorphicity. Transactions of the American Mathematical Society 370 (2): 1045–1100.

    Article  MathSciNet  Google Scholar 

  10. Colombo, F., and J. Gantner. 2018. An application of the S-functional calculus to fractional diffusion processes. Milan Journal of Mathematics 86 (2): 225–303.

    Article  MathSciNet  Google Scholar 

  11. Alpay, D., F. Colombo, and D.P. Kimsey. 2016. The spectral theorem for quaternionic unbounded normal operators based on the \(S\)-spectrum. Journal of Mathematical Physics 57 (2): 023503.

    Article  ADS  MathSciNet  Google Scholar 

  12. Colombo, F., and J. Gantner. 2019. Quaternionic closed operators, fractional powers and fractional diffusion processes. Operator theory: advances and applications, 274. Cham: Birkhäuser/Springer.

    Book  Google Scholar 

  13. Cerejeiras, P., F. Colombo, U. Kähler, and I. Sabadini. 2019. Perturbation of normal quaternionic operators. Transactions of the American Mathematical Society 372 (5): 3257–3281.

    Article  MathSciNet  Google Scholar 

  14. Alpay, D., F. Colombo, and I. Sabadini. 2020. Quaternionic de Branges spaces and characteristic operator function. SpringerBriefs in mathematics. Cham: Springer.

    Book  Google Scholar 

  15. Colombo, F., and D.P. Kimsey. 2022. The spectral theorem for normal operators on a Clifford module. Analysis and Mathematical Physics 12 (1): Paper No. 25, 92 25.

    Article  MathSciNet  Google Scholar 

  16. Colombo, F., I. Sabadini, and D.C. Struppa. 2011. Noncommutative functional calculus. Theory and applications of slice regular functions. Basel: Birkhäuser.

    Book  Google Scholar 

  17. Colombo, F., J. Gantner, and S. Pinton. 2021. An introduction to hyperholomorphic spectral theories and fractional powers of vector operators. Advances in Applied Clifford Algebras 31 (3): Paper No. 45.

    Article  MathSciNet  Google Scholar 

  18. Greub, W., and W. Rheinboldt. 1959. On a generalization of an inequality of L.V. Kantorovich. Proceedings of the American Mathematical Society 10: 407–415.

    Article  MathSciNet  Google Scholar 

  19. Lin, C.T. 1984. Extrema of quadratic forms and statistical applications. Communications in Statistics A 13 (12): 1517–1520.

    Article  MathSciNet  Google Scholar 

  20. Liu, S., and H. Neudecker. 1997. Kantorovich inequalities and efficiency comparisons for several classes of estimators in linear models. Statistica Neerlandica 51 (3): 345–355.

    Article  MathSciNet  Google Scholar 

  21. Galantai, A. 2001. A study of Auchmuty’s error estimate. Computers & Mathematics with Applications 42 (8–9): 1093–1102.

    Article  MathSciNet  Google Scholar 

  22. Robinson, P.D., and A.J. Wathen. 1992. Variational bounds on the entries of the inverse of a matrix. IMA Journal of Numerical Analysis 12 (4): 463–486.

    Article  MathSciNet  Google Scholar 

  23. Ghiloni, R., V. Moretti, and A. Perotti. 2013. Continuous slice functional calculus in quaternionic Hilbert spaces. Reviews in Mathematical Physics 25: 1350006.

    Article  ADS  MathSciNet  Google Scholar 

  24. Fujii, M., J. Mićić Hot, J. Pečarić, and Y. Seo. 2012. Recent developments of Mond-Pečarić method in operator inequalities. Inequalities for bounded selfadjoint operators on a Hilbert space II. Monographs in inequalities 4. Zagreb: Element.

    Google Scholar 

  25. Helmberg, G. 1969. Introduction to spectral theory in Hilbert space. New York: Wiley.

    Google Scholar 

  26. Pečarić, J., T. Furuta, J. Mićić Hot, and Y. Seo. 2013. Mond-Pečarić method in operator inequalities, Monographs in inequalities 1. Zagreb: Element.

    Google Scholar 

  27. Mahdipour, S., A. Niknam, and M. Fashandi. 2019. Some inequalities for selfadjoint operators on quaternionic Hilbert spaces. Advances in Applied Clifford Algebras 30: 5.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the reviewers for the insightful suggestions which have helped to improve the paper. The research of the second author is supported by partly by University of Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramkishan.

Additional information

Communicated by S. Ponnusamy.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmarha, P., Ramkishan Kantorovich inequality for positive operators on quaternionic Hilbert spaces. J Anal 32, 993–1007 (2024). https://doi.org/10.1007/s41478-023-00664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-023-00664-6

Keywords

Mathematics Subject Classification

Navigation