Skip to main content
Log in

A New Resolvent Equation for the \(S\)-Functional Calculus

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

The \(S\)-functional calculus is a functional calculus for \((n+1)\)-tuples of not necessarily commuting operators that can be considered a higher-dimensional version of the classical Riesz–Dunford functional calculus for a single operator. In this last calculus, the resolvent equation plays an important role in the proof of several results. Associated with the \(S\)-functional calculus there are two resolvent operators: the left \(S_L^{-1}(s,T)\) and the right one \(S_R^{-1}(s,T)\), where \(s=(s_0,s_1,\ldots ,s_n)\in \mathbb {R}^{n+1}\) and \(T=(T_0,T_1,\ldots ,T_n)\) is an \((n+1)\)-tuple of noncommuting operators. The two \(S\)-resolvent operators satisfy the \(S\)-resolvent equations \(S_L^{-1}(s,T)s-TS_L^{-1}(s,T)=\mathcal {I}\), and \(sS_R^{-1}(s,T)-S_R^{-1}(s,T)T=\mathcal {I}\), respectively, where \(\mathcal {I}\) denotes the identity operator. These equations allow us to prove some properties of the \(S\)-functional calculus. In this paper we prove a new resolvent equation which is the analog of the classical resolvent equation. It is interesting to note that the equation involves both the left and the right \(S\)-resolvent operators simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpay, D.: The Schur algorithm, reproducing kernel spaces and system theory, American Mathematical Society, Providence, RI: Translated from the 1998 French original by Stephen S. Wilson, Panoramas et Synthèses (2001)

  2. Alpay, D., Colombo, F., Sabadini, I.: Schur functions and their realizations in the slice hyperholomorphic setting. Integr. Equ. Oper. Theory 72, 253–289 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alpay, D., Colombo, F., Sabadini, I.: Pontryagin de Branges–Rovnyak spaces of slice hyperholomorphic functions. J. Anal. Math. 121, 87–125 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Alpay, D., Colombo, F., Sabadini, I.: Krein-Langer factorization and related topics in the slice hyperholomorphic setting. J. Geom. Anal. 24, 843–872 (2014)

  5. Alpay, D., Colombo, F., Sabadini, I.: On some notions of convergence for n-tuples of operators. Math. Methods Appl. Sci. doi:10.1002/mma.2982

  6. Alpay, D., Colombo, F., Lewkowicz, I., Sabadini, I.: Realizations of slice hyperholomorphic generalized contractive and positive functions. arXiv:1310.1035

  7. Alpay, D., Dijksma, A., Rovnyak, J., de Snoo, H.: Schur Functions, Operator Colligations, and Reproducing Kernel Pontryagin Spaces, volume 96 of Operator Theory: Advances and Applications. Birkhäuser, Basel (1997)

  8. Alpay, D., Peretz, Y.: Realizations for Schur upper triangular operators centered at an arbitrary point. Integr. Equ. Oper. Theory 37, 251–323 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Alpay, D., Vinnikov, V.: Finite dimensional de Branges spaces on Riemann surfaces. J. Funct. Anal. 189(2), 283–324 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Brackx, F., Delanghe, R., Sommen, F.: Clifford analysis. Research Notes in Mathematics, 76, Pitman. Advanced Publishing Program, Boston (1982)

  11. Colombo, F., Sabadini, I.: On some properties of the quaternionic functional calculus. J. Geom. Anal. 19, 601–627 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Colombo, F., Sabadini, I.: The quaternionic evolution operator. Adv. Math. 227, 1772–1805 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  13. Colombo, F., Sabadini, I.: On the formulations of the quaternionic functional calculus. J. Geom. Phys. 60, 1490–1508 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Colombo, F., Sabadini, I.: The Cauchy formula with \(s\)-monogenic kernel and a functional calculus for noncommuting operators. J. Math. Anal. Appl. 373, 655–679 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Colombo, F., Sabadini, I.: The F-spectrum and the SC-functional calculus. Proc. R. Soc. Edinburgh Sect. A 142, 479–500 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Colombo, F., Sabadini, I., Sommen, F.: The Fueter mapping theorem in integral form and the \({\cal {F}}\)-functional calculus. Math. Methods Appl. Sci. 33, 2050–2066 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Colombo, F., Sabadini, I., Struppa, D.C.: A new functional calculus for noncommuting operators. J. Funct. Anal. 254, 2255–2274 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra, Progress in Mathematical Physics, vol. 39. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  19. Colombo, F., Sabadini, I., Struppa, D.C.: Noncommutative Functional Calculus. Theory and Applications of Slice Hyperholomorphic Functions, Progress in Mathematics. Birkhäuser, Basel (2011)

  20. Delanghe, R., Sommen, F., Soucek, V.: Clifford algebra and spinor-valued functions. A function theory for the Dirac operator. Mathematics and its Applications, vol. 53, xviii+485 pp. Kluwer Academic Publishers Group, Dordrecht (1992)

  21. Dunford, N., Schwartz, J.: Linear Operators, Part I: General Theory. Wiley, New York (1988)

    MATH  Google Scholar 

  22. Fueter, R.: Analytische Funktionen einer Quaternionenvariablen. Commun. Math. Helv. 4, 9–20 (1932)

    Article  MathSciNet  Google Scholar 

  23. Ghiloni, R., Moretti, V., Perotti, A.: Continuous slice functional calculus in quaternionic Hilbert spaces. Rev. Math. Phys. 25, 83 (2013)

    Article  MathSciNet  Google Scholar 

  24. Ghiloni, R., Recupero, V.: Semigroups over real alternative \(*\)-algebras: generation theorems and spherical sectorial operators. Trans. Amer. Math. Soc.

  25. Gürlebeck, K., Habetha, K., Sprössig, W.: Holomorphic Functions in the Plane and \(n\)-Dimensional Space. Birkhäuser, Basel (2008)

    Google Scholar 

  26. Jefferies, B.: Spectral Properties of Noncommuting Operators. Lecture Notes in Mathematics, vol. 1843. Springer, Berlin (2004)

  27. Jefferies, B., McIntosh, A.: The Weyl calculus and Clifford analysis. Bull. Aust. Math. Soc. 57, 329–341 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  28. Jefferies, B., McIntosh, A., Picton-Warlow, J.: The monogenic functional calculus. Studia Math. 136, 99–119 (1999)

    MATH  MathSciNet  Google Scholar 

  29. Li, C., McIntosh, A., Qian, T.: Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces. Rev. Mat. Iberoam. 10, 665–721 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Livs̆ic, M.S., Kravitski, N., Markus, A., Vinnikov, V.: Commuting Nonselfadjoint Operators and Their Applications to System Theory. Kluwer, Dordrecht (1995)

    Book  Google Scholar 

  31. McIntosh, A., Pryde, A.: A functional calculus for several commuting operators. Indiana Univ. Math. J. 36, 421–439 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  32. Qian, T.: Generalization of Fueter’s result to \({\mathbb{R}}^{n+1}\). Rend. Mat. Acc. Lincei 8, 111–117 (1997)

    Article  MATH  Google Scholar 

  33. Reed, M., Simon, B.: Functional Analysis. Methods of Modern Mathematical Physics. Academic Press, London (1980)

    Google Scholar 

  34. Sce, M.: Osservazioni sulle serie di potenze nei moduli quadratici. Atti Acc. Lincei Rend. Fisica 23, 220–225 (1957)

    MathSciNet  Google Scholar 

  35. Vinnikov, V: Commuting Nonselfadjoint Operators and Algebraic Curves. Operator Theory: Advances and Applications, vol. 59, pp. 348–371. Birkhäuser, Basel (1992)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Sabadini.

Additional information

Communicated by Der-Chen Edward Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alpay, D., Colombo, F., Gantner, J. et al. A New Resolvent Equation for the \(S\)-Functional Calculus. J Geom Anal 25, 1939–1968 (2015). https://doi.org/10.1007/s12220-014-9499-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9499-9

Keywords

Mathematics Subject Classification

Navigation