Skip to main content
Log in

Gromov–Hausdorff distance for pointed metric spaces

  • Original Research Paper
  • Published:
The Journal of Analysis Aims and scope Submit manuscript

Abstract

We establish an embedding theorem for the Gromov–Hausdorff limit of a sequence of proper pointed metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Even though \({{{{\mathsf {dist}}_{\mathcal H}}}}\) is not always an actual distance function, we follow standard convention in calling it Hausdorff distance.

  2. Alternatively, one can replace the distance in X with its associated standard bounded distance obtained by taking a minimum with 1, or one can do this with \({{{{\mathsf {dist}}_{\mathcal H}}}}\).

  3. Even though \({{{{{\mathsf {dist}}}_{{\mathcal G \mathcal H}}}}}\) is not always an actual distance function, we follow standard convention in calling it Gromov–Hausdorff distance.

  4. Even though \({{{{\mathsf {dist}}_{{{\mathcal G \mathcal H}}_*}}}}\) is not always an actual distance function, we follow standard convention in calling it pointed Gromov–Hausdorff distance.

  5. Gromov (1981, p. 63) calls this “modified Hausdorff distance” and credits it to O. Gabber.

  6. As there is no harm in doing so, we assume that each \(t_n\) satisfies \(t_n<1/2\).

  7. Therefore, d is an \((\varepsilon ;a_n,b)\)-admissible distance on \(X_n\sqcup Z\), so \({{{{\mathsf {dist}}_{{{\mathcal G \mathcal H}}_*}}}}((X_n;a_n),(Z;b))\le \varepsilon \).

References

  • Ambrosio, L., and P. Tilli. 2004. Topics on Analysis in Metric Spaces. Oxford Lecture Series in Mathematics and its Applications, vol. 25. Oxford: Oxford University Press.

    MATH  Google Scholar 

  • Bonk, M., J. Heinonen, and P. Koskela. 2001. Uniformizing Gromov hyperbolic spaces. Astérisque 270: 1–99.

    MathSciNet  MATH  Google Scholar 

  • Bridson, M.R., and A. Haefliger. 1999. Metric spaces of non-positive curvature. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Bridson, M.R., and G.A. Swarup. 1994. On Hausdorff-Gromov convergence and a theorem of Paulin. Enseign. Math. (2) 40 3–4: 267–289.

  • Burago, D., Y. Burago, and S. Ivanov. 2001. A course in metric geometry. Providence: American Mathematical Society.

    Book  MATH  Google Scholar 

  • David, G., and S. Semmes. 1997. Fractured fractals and broken dreams:self-similar geometry through metric and measure. Oxford lecture series in mathematics and its applications, vol. 7. Oxford: Oxford University Press.

    Google Scholar 

  • Gromov, M. 1981. Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53: 53–73.

  • Heinonen, J. 2003. Geometric embeddings of metric spaces. Jyväskylä: Dept. Math. Stat. Univ. Jyväskylä.

    MATH  Google Scholar 

  • Heinonen, J., P. Koskela, N. Shanmugalingam, and J.T. Tyson. 2013. Sobolev spaces on metric measure spaces: an approach based on upper gradients. Cambridge, England: Cambridge University Press.

  • Herron, D.A. 2011. Uniform metric spaces, annular quasiconvexity, and pointed tangent spaces. Math. Scand. 108: 115–145.

    Article  MathSciNet  MATH  Google Scholar 

  • Luukkainen, J., and E. Saksman. 1998. Every complete doubling metric space carries a doubling measure. Proc. Am. Math. Soc. 126(2): 531–534.

    Article  MathSciNet  MATH  Google Scholar 

  • Munkres, J.R. 2000. Topology. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  • Petersen, P. 1993. Gromov–Hausdorff convergence of metric spaces. Proc. Symp. Pure Math. 54: 489–504.

    Article  MathSciNet  MATH  Google Scholar 

  • Previte, M., and S. Yang. 2008. A novel way to generate fractals. Am. Math. Monthly 115(1): 13–32.

    MathSciNet  MATH  Google Scholar 

  • Watanabe, M. 2007. Local cut points and metric measure spaces with Ricci curvature bounded below. Pacific J. Math. 233(1): 229–256.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Herron.

Additional information

D. A. Herron gratefully acknowledges partial support from the Charles Phelps Taft Research Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herron, D.A. Gromov–Hausdorff distance for pointed metric spaces. J Anal 24, 1–38 (2016). https://doi.org/10.1007/s41478-016-0001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41478-016-0001-x

Keywords

Mathematics Subject Classification

Navigation