Skip to main content
Log in

Poincaré duality for generalized persistence diagrams of (co)filtrations

  • Published:
Journal of Applied and Computational Topology Aims and scope Submit manuscript

Abstract

We dualize previous work on generalized persistence diagrams for filtrations to cofiltrations. When the underlying space is a manifold, we express this duality as a Poincaré duality between their generalized persistence diagrams. A heavy emphasis is placed on the recent discovery of functoriality of the generalized persistence diagram and its connection to Rota’s Galois Connection Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  • Baclawski, K.: Whitney numbers of geometric lattices. Adv. Math. 16(2), 125–138 (1975)

    Article  MathSciNet  Google Scholar 

  • Betthauser, L., Bubenik, P., Edwards, P.B.: Graded persistence diagrams and persistence landscapes. Discrete Comput. Geom. 67(1), 203–230 (2022)

    Article  MathSciNet  Google Scholar 

  • Bubenik, P., Elchesen, A.: Virtual persistence diagrams, signed measures, Wasserstein distances, and Banach spaces. J. Appl. Comput. Topol. 6(4), 429–474 (2022)

    Article  MathSciNet  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120 (2007)

    Article  MathSciNet  Google Scholar 

  • Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Extending persistence using Poincaré and Lefschetz duality. Found. Comput. Math. 9(1), 79–103 (2009)

    Article  MathSciNet  Google Scholar 

  • Crapo, H.H.: The Möbius function of a lattice. J. Combin. Theory 1(1), 126–131 (1966)

    Article  Google Scholar 

  • de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Dualities in persistent (co)homology. Inverse Prob. 27(12), 124003 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Edelsbrunner, H., Kerber, M.: Alexander duality for functions: the persistent behavior of land and water and shore. In: Proceedings of the Twenty-Eighth Annual Symposium on Computational Geometry, pp. 249–258 (2012)

  • Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28(4), 511–533 (2002)

    Article  MathSciNet  Google Scholar 

  • Fasy, B.T., Patel, A.: Persistent homology transform cosheaf. arXiv (2022)

  • Gülen, A.B. McCleary, A.: Galois connections in persistent homology. arXiv (2022)

  • Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  • Henselman, G., Ghrist, R.: Matroid Filtrations and Computational Persistent Homology. arXiv (2016)

  • Henselman-Petrusek, G.: Matroids and Canonical Forms: Theory and Applications. arXiv (2017)

  • Kališnik, S.: Alexander duality for parametrized homology. Homol. Homot. Appl. 15(2), 227–243 (2013)

    Article  MathSciNet  Google Scholar 

  • Kim, W., Mémoli, F.: Generalized persistence diagrams for persistence modules over posets. J. Appl. Comput. Topol. 5(4), 533–581 (2021)

    Article  MathSciNet  Google Scholar 

  • Kim, W., Moore, S.: Bigraded Betti numbers and generalized persistence diagrams. arXiv (2021)

  • Landi, C., Frosini, P.: New pseudodistances for the size function space. In: Melter, R.A., Wu, A.Y., Latecki, L.J. (eds) Vision Geometry VI, vol. 3168, pp. 52–60. International Society for Optics and Photonics, SPIE (1997)

  • McCleary, A.: Private communication (2022)

  • McCleary, A., Patel, A.: Bottleneck stability for generalized persistence diagrams. Proc. Am. Math. Soc. 148(7), 3149–3161 (2020)

    Article  MathSciNet  Google Scholar 

  • McCleary, A., Patel, A.: Edit distance and persistence diagrams over lattices. SIAM J. Appl. Algebra Geom. 6(2), 134–155 (2022)

    Article  MathSciNet  Google Scholar 

  • Miller, E.: Homological algebra of modules over posets. arXiv (2020)

  • Munkres, J.: Elements of Algebraic Topology. Perseus Books Publishing (1984)

  • Mémoli, F., Stefanou, A., Zhou, L.: Persistent cup product structures and related invariants. arXiv (2022)

  • Patel, A.: Generalized persistence diagrams. J. Appl. Comput. Topol. 1(3), 397–419 (2018)

    Article  MathSciNet  Google Scholar 

  • Robins, V.: Towards computing homology from approximations. Topol. Proc. 24, 503–532 (1999)

    MathSciNet  Google Scholar 

  • Rota, G.-C.: On the foundations of combinatorial theory I. Theory of Möbius Functions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 2(4):340–368 (1964)

  • Rota, G.-C.: On the combinatorics of the Euler characteristic. In: Studies in Pure Mathematics (Presented to Richard Rado), pp. 221–233. Academic Press, London (1971)

  • Shepard, A.D.: A Cellular Description of the Derived Category of a Stratified Space. Ph.d. thesis, Brown University (1985)

Download references

Acknowledgements

We thank Alex McCleary for providing the proof for Proposition 6.3. The first author thanks Primoz Skraba for hosting him at Queen Mary University London (2022–2023) and for the many insightful discussions on the Möbius inversion and persistent homology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Patel.

Ethics declarations

Conflict of interest

The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially funded by the Leverhulme Trust Grant VP2-2021-008 awarded to the first author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, A., Rask, T. Poincaré duality for generalized persistence diagrams of (co)filtrations. J Appl. and Comput. Topology (2024). https://doi.org/10.1007/s41468-023-00159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41468-023-00159-0

Keywords

Mathematics Subject Classification

Navigation