Skip to main content

Computing persistent homology with various coefficient fields in a single pass

Abstract

This article introduces an algorithm to compute the persistent homology of a filtered complex with various coefficient fields in a single matrix reduction. The algorithm is output-sensitive in the total number of distinct persistent homological features in the diagrams for the different coefficient fields. This computation allows us to infer the prime divisors of the torsion coefficients of the integral homology groups of the topological space at any scale, hence furnishing a more informative description of topology than persistence in a single coefficient field. We provide theoretical complexity analysis as well as detailed experimental results. The code is part of the Gudhi software library, and is available at Maria (in: GUDHI User and Reference Manual, GUDHI Editorial Board, 2015).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allen, H.: Algebraic Topology, 1st edn. Cambridge University Press, New York (2001)

    MATH  Google Scholar 

  2. Bauer, U., Kerber, M., Reininghaus, J.: Clear and compress: computing persistent homology in chunks. Topol. Methods Data Anal. Vis. III, 103–117 (2014)

    MATH  Google Scholar 

  3. Bobrowski, O., Kahle, M.: Topology of random geometric complexes: a survey. J. Appl. Comput. Topol. 1, 331–364 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  4. Boissonnat, J.-D., Maria, C.: Computing persistent homology with various coefficient fields in a single pass. In: Proceedings of 22th Annual European Symposium on Algorithms-ESA 2014, Wroclaw, Poland, September 8–10, 2014, pp. 185–196 (2014)

  5. Boissonnat, J.-D., Dey, T.K., Maria, C.: The compressed annotation matrix: an efficient data structure for computing persistent cohomology. Algorithmica 73(3), 607–619 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  6. Carlsson, G.E., Ishkhanov, T., de Silva, V., Zomorodian, A.: On the local behavior of spaces of natural images. Int. J. Comput. Vis. 76(1), 1–12 (2008)

    MathSciNet  Article  Google Scholar 

  7. Chen, C., Kerber, M.: Persistent homology computation with a twist. In: Proceedings 27th European Workshop on Computational Geometry (2011)

  8. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discret. Comput. Geom. 37(1), 103–120 (2007)

    MathSciNet  Article  MATH  Google Scholar 

  9. de Silva, V., Morozov, D., Vejdemo-Johansson, M.: Persistent cohomology and circular coordinates. Discret. Comput. Geom. 45(4), 737–759 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  10. Dey, T.K., Fan, F., Wang, Y.: Computing topological persistence for simplicial maps. In: Symposium on Computational Geometry, p. 345 (2014)

  11. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American Mathematical Society, Providence (2010)

    MATH  Google Scholar 

  12. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discret. Comput. Geom. 28(4), 511–533 (2002)

    MathSciNet  Article  MATH  Google Scholar 

  13. Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)

    MathSciNet  Article  MATH  Google Scholar 

  14. Granlund, T.: GMP: the GNU multiple precision arithmetic library. http://gmplib.org/ (2004)

  15. Kahle, M., Lutz, F., Newman, A., Parsons, K.: Cohen–Lenstra heuristics for torsion in homology of random complexes. ArXiv e-prints (2017)

  16. Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  17. Linial, N., Peled, Y.: On the phase transition in random simplicial complexes. Ann. Math. 184(3), 745–773 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  18. Łuczak, T., Peled, Y.: Integral homology of random simplicial complexes. Discret. Comput. Geom. 59(1), 131–142 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  19. Maria, C.: Persistent cohomology. In: GUDHI User and Reference Manual. GUDHI Editorial Board (2015)

  20. Martin, S., Thompson, A., Coutsias, E.A., Watson, J.: Topology of cyclo-octane energy landscape. J. Chem. Phys. 132(23), 234115 (2010)

    Article  Google Scholar 

  21. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6, 64–94 (1962)

    MathSciNet  Article  MATH  Google Scholar 

  22. Von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, New York (2003)

    MATH  Google Scholar 

  23. Zomorodian, A., Carlsson, G.E.: Computing persistent homology. Discret. Comput. Geom. 33(2), 249–274 (2005)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 339025 GUDHI (Algorithmic Foundations of Geometry Understanding in Higher Dimensions).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Clément Maria.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been partially supported by the European Research Council under Advanced Grant 339025 GUDHI (Algorithmic Foundations of Geometric Understanding in Higher Dimensions). An extended abstract of this article appeared in the proceedings of the European Symposium on Algorithms 2014 (Boissonnat and Maria 2014).

Arithmetic notations

Arithmetic notations

  • \(\mathbb {Z}\) ring of integers,

  • \(\mathbb {Z}/n\mathbb {Z}\) ring of integers modulo \(n \ge 2\),

  • \(\mathbb {Q}\) field of rationals,

  • \(q_1, \ldots , q_r\) the r first prime numbers, for \(r \ge 1\),

  • [r] the set \(\{1, \ldots , r\}\),

  • \(Q := q_1 \times \cdots \times q_r\), product of first r prime numbers,

  • \(Q_S := \prod _{s \in S} q_s\), for a subset of indices \(S \subset [r]\),

  • Indices s, t, r, and set of indices S and T, are reserved to the indexing of prime numbers \(\{q_1, \ldots , q_r\}\),

  • Indices i, j, k and m refer to indices in the filtration of a complex, and hence indices for matrix columns and matrix reduction algorithms.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boissonnat, JD., Maria, C. Computing persistent homology with various coefficient fields in a single pass. J Appl. and Comput. Topology 3, 59–84 (2019). https://doi.org/10.1007/s41468-019-00025-y

Download citation

Keywords

  • Persistent homology
  • Multi-field persistence
  • Integral homology
  • Torsion
  • Topology inference