Skip to main content
Log in

Topology of random geometric complexes: a survey

  • Published:
Journal of Applied and Computational Topology Aims and scope Submit manuscript

Abstract

In this expository article, we survey the rapidly emerging area of random geometric simplicial complexes. Random geometric complexes may be viewed as higher-dimensional generalizations of random geometric graphs, where vertices are generated by a random point process, and edges are placed based on proximity. Extending the notion of connected components and cycles in graphs, the main object of study has been the homology of these complexes. We review the results known to date about the probabilistic behavior of the homology (and related structures) generated by these random complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adler, R.J., Bobrowski, O., Weinberger, S.: Crackle: the homology of noise. Discret. Comput. Geom. 52(4), 680–704 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Adler, R.J., Taylor, J.E.: Random fields and geometry, Springer Monographs in Mathematics. Springer, New York (2007)

  • Adler, R.J., Taylor, J.E.: Topological complexity of smooth random functions. In: Lecture Notes in Mathematics, vol. 2019. Springer, Heidelberg (2011)

  • Aizenman, M., Chayes, J.T., Chayes, L., Fröhlich, J., Russo L.: On a sharp transition from area law to perimeter law in a system of random surfaces. Comm. Math. Phys. 92(1), 19–69 (1983)

  • Alon, N., Spencer J.H.: The probabilistic method. Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd ed. Wiley, Hoboken (2008) (with an appendix on the life and work of Paul Erdős).

  • Babson, E., Hoffman, C., Kahle, M.: The fundamental group of random 2-complexes. J. Amer. Math. Soc. 24(1), 1–28 (2011)

  • Balakrishnan, S., Rinaldo, A., Sheehy, D., Singh, A., Wasserman, L.A.: Minimax rates for homology inference. AISTATS 9, 206–207 (2012)

    Google Scholar 

  • Baryshnikov, Y., Bubenik, P., Kahle, M.: Min-type Morse theory for configuration spaces of hard spheres. Int. Math. Res. Not. IMRN 9, 2577–2592 (2014). (MR 3207377)

    Article  MathSciNet  MATH  Google Scholar 

  • Bobrowski, O., Adler, R.J.: Distance functions, critical points, and the topology of random Čech complexes. Homol. Homotopy Appl. 16(2), 311–344 (2014). (en)

    Article  MATH  Google Scholar 

  • Bobrowski, O., Kahle, M., Skraba, P.: Maximally persistent cycles in random geometric complexes. Ann. Appl. Prob. 27(4), 2032–2060 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Bobrowski, O., Mukherjee, S.: The topology of probability distributions on manifolds. Probab. Theory Relat Fields 161(3–4), 651–686 (2014)

    MathSciNet  MATH  Google Scholar 

  • Bobrowski, O., Mukherjee, S., Taylor, J.E.: Topological consistency via kernel estimation. Bernoulli 23(1), 288–328 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Bobrowski, O., Oliveira, G.: Random Čech complexes on riemannian manifolds (2017) arXiv:1704.07204 (arXiv preprint)

  • Bobrowski, O., Weinberger, S.: On the vanishing of homology in random Čech complexes. Random Struct. Algorithm 51(1), 14–51 (2017)

    Article  MATH  Google Scholar 

  • Bollobás, B.: Random graphs, 2nd edn. Cambridge studies in advanced mathematics, vol. 73. Cambridge University Press, Cambridge (2001)

  • Bollobás, B., Riordan, O.: Percolation. Cambridge University Press, New York (2006)

  • Borsuk, K.: On the imbedding of systems of compacta in simplicial complexes. Fund. Math. 35, 217–234 (1948)

  • Bryzgalova, L.N.: The maximum functions of a family of functions that depend on parameters. Funktsional. Anal. i Prilozhen. 12(1), 66–67 (1978)

  • Bubenik, P., Kim, P.T.: A statistical approach to persistent homology. Homol. Homotopy Appl. 9(2), 337–362 (2007)

  • Carlsson, G.: Topology and data. Bull. Amer. Math. Soc. (N.S.) 46(2), 255–308 (2009)

  • De Silva, V., Ghrist, R.: Coverage in sensor networks via persistent homology. Algebr. Geom. Topol. 7, 339–358 (2007)

  • Decreusefond, L., Ferraz, E., Randriambololona, H., Vergne, A.: Simplicial homology of random configurations. Adv. Appl. Probab. 46(2), 325–347 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Duy, T.K., Hiraoka, Y., Shirai, T.: Limit theorems for persistence diagrams (2016) arXiv:1612.08371 [math]

  • Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inform. Theory 29(4), 551–559 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Fasy, B.T., Lecci, F., Rinaldo, A., Wasserman, L., Balakrishnan, S., Singh, A.: Confidence sets for persistence diagrams. Ann. Stat. 42(6), 2301–2339 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Ganesan, G.: Size of the giant component in a random geometric graph. Ann. Inst. Henri Poincaré Probab. Stat. 49(4), 1130–1140 (2013)

  • Gershkovich, V., Rubinstein, H.: Morse theory for Min-type functions. Asian J. Math. 1(4), 696–715 (1997)

  • Ghrist, R.: Barcodes: the persistent topology of data. Bull. Amer. Math. Soc. (N.S.) 45(1), 61–75 (2008)

  • Gilbert, E.N.: Random plane networks. J. Soc. Indust. Appl. Math. 9, 533–543 (1961)

  • Grimmett, G.: Percolation, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 321. Springer, Berlin (1999)

  • Grimmett, G.R., Holroyd, A.E.: Plaquettes, spheres, and entanglement. Electron. J. Probab. 15, 1415–1428 (2010)

  • Hatcher, A.: Algebraic topology. Cambridge University Press, Cambridge (2002)

  • Janson, S., Łuczak, T., Rucinski, A.: Random graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (2000)

  • Kahle, M.: Random geometric complexes. Discrete Comput. Geom. 45(3), 553–573 (2011)

  • Kahle, M.: Sharp vanishing thresholds for cohomology of random flag complexes. Ann. Math. (2) 179(3), 1085–1107 (2014)

  • Kahle, M.: Topology of random simplicial complexes: a survey. AMS Contemp. Math 620, 201–222 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Kahle, M., Meckes, E.: Limit theorems for Betti numbers of random simplicial complexes. Homol. Homotopy Appl. 15(1), 343–374 (2013)

  • Kahle, M., Meckes, E.: Erratum: Limit theorems for betti numbers of random simplicial complexes (2015). arXiv:1501.03759 (arXiv preprint)

  • Linial, N., Meshulam, R.: Homological connectivity of random 2-complexes. Combinatorica 26(4), 475–487 (2006)

  • Matov, V.I.: Topological classification of the germs of functions of the maximum and minimax of families of functions in general position. Uspekhi Mat. Nauk 37(4)(226), 167–168 (1982)

  • Meester, R., Roy R.: Continuum percolation, Cambridge Tracts in Mathematics, vol. 119. Cambridge University Press, Cambridge (1996)

  • Meshulam, R., Wallach, N.: Homological connectivity of random \(k\)-dimensional complexes. Random Struct. Algorithms 34(3), 408–417 (2009)

  • Milnor, J.: Morse theory. In: Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, no. 51. Princeton University Press, Princeton (1963)

  • Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39(1–3), 419–441 (2008)

  • Munkres, J.R.: Elements of algebraic topology. Addison-Wesley Publishing Company, Menlo Park (1984)

  • Niyogi, P., Smale, S., Weinberger, S.: A topological view of unsupervised learning from noisy data. SIAM J. Comput. 40(3), 646–663 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Owada, T., Adler, R.J.: Limit theorems for point processes under geometric constraints (and topological crackle). Ann. Prob. 45(3), 2004–2055 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Penrose, M.: Random geometric graphs, Oxford Studies in Probability, vol. 5. Oxford University Press, Oxford (2003)

  • Robins, V.: Betti number signatures of homogeneous poisson point processes. Phys. Rev. E 74(6), 061107 (2006)

  • The GUDHI Project: GUDHI user and reference manual. GUDHI Editorial Board (2015)

  • Yogeshwaran, D., Adler, R.J.: On the topology of random complexes built over stationary point processes. Ann. Appl. Prob. 25(6), 3338–3380 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  • Yogeshwaran, D., Subag, E., Adler, R.J.: Random geometric complexes in the thermodynamic regime. Prob. Theory Relat. Fields 167(1–2), 107–142 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Bobrowski.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Matthew Kahle gratefully acknowledges support from NSF-DMS #1352386.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrowski, O., Kahle, M. Topology of random geometric complexes: a survey. J Appl. and Comput. Topology 1, 331–364 (2018). https://doi.org/10.1007/s41468-017-0010-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41468-017-0010-0

Keywords

Mathematics Subject Classification

Navigation