Skip to main content
Log in

Higher Protein Intake does not Modulate Resistance Training–Induced Changes in Myokines and Cognitive Function in Middle-Aged Adults

  • Original Research
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

While protein intake augments resistance training–induced changes in muscular strength and body composition, the benefits of higher protein intake and resistance training on cognitive outcomes and myokines with neurocognitive implications are unclear. The objective of this study is to compare the efficacy of moderate (0.8–1.0 g·kg−1·day−1) and high (1.6–1.8 g·kg−1·day−1) protein intake during a 10-week resistance training intervention, combined with blood and muscle sampling, on neurocognitive function and circulating myokines (e.g., cathepsin B [CTSB] and brain-derived neurotrophic factor [BDNF]) in 40 adults (age = 50.0 ± 7.3 years). A muscle biopsy was collected from the vastus lateralis to measure CTSB mRNA. Performance during the spatial reconstruction and Flanker tasks were utilized to assess relational memory and executive function. N2 and P3 event-related potentials (ERPs) were assessed during the Flanker task to index neuroelectric function. While differing protein intake did not impact outcomes, there were increases in muscle CTSB mRNA expression and plasma BDNF concentrations from resistance training, independent of protein intake. Increased BDNF was associated with decreased reaction time (congruent: β =  − 0.38, p = 0.026; incongruent: β =  − 0.38, p = 0.024) and congruent N2 fractional peak latency (FPL) (β =  − 0.52, p = 0.016) during the Flanker task, while increased plasma CTSB was associated with faster incongruent P3 FPL (β =  − 0.42, p = 0.036). Although there was no significant effect of protein group, increases in circulating myokines showed improvement in executive function and information processing speed. (NCT03029975; January 1, 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data supporting the findings of the present study are available from the corresponding author on reasonable request.

References

  • Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64(15), 5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496

    Article  PubMed  Google Scholar 

  • Bever, C. T., Panitch, H. S., & Johnson, K. P. (1994). Increased cathepsin B activity in peripheral blood mononuclear cells of multiple sclerosis patients. Neurology, 44(4), 745–745. https://doi.org/10.1212/WNL.44.4.745

    Article  PubMed  Google Scholar 

  • Broadhouse, K. M., Singh, M. F., Suo, C., Gates, N., Wen, W., Brodaty, H., Jain, N., Wilson, G. C., Meiklejohn, J., Singh, N., Baune, B. T., Baker, M., Foroughi, N., Wang, Y., Kochan, N., Ashton, K., Brown, M., Li, Z., Mavros, Y., …, Valenzuela, JM. (2020). Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. NeuroImage: Clinical, 25,102182 https://doi.org/10.1016/j.nicl.2020.102182

  • Cassilhas, R. C., Lee, K. S., Fernandes, J., Oliveira, M. G. M., Tufik, S., Meeusen, R., & De Mello, M. T. (2012). Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience, 202, 309–317. https://doi.org/10.1016/j.neuroscience.2011.11.029

    Article  PubMed  Google Scholar 

  • Chan, C. B., & Ye, K. (2017). Sex differences in brain-derived neurotrophic factor signaling and functions. Journal of Neuroscience Research, 95(1–2), 328–335. https://doi.org/10.1002/jnr.23863

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, Y. K., Pan, C. Y., Chen, F. T., Tsai, C. L., & Huang, C. C. (2012). Effect of resistance-exercise training on cognitive function in healthy older adults: A review. In Journal of Aging and Physical Activity, 20(4), 497–517. https://doi.org/10.1123/japa.20.4.497

    Article  Google Scholar 

  • Church, D. D., Hoffman, J. R., Mangine, G. T., Jajtner, A. R., Townsend, J. R., Beyer, K. S., Wang, R., La Monica, M. B., Fukuda, D. H., & Stout, J. R. (2016). Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise. Journal of Applied Physiology, 121, 123–128. https://doi.org/10.1152/japplphysiol.00233.2016

    Article  PubMed  Google Scholar 

  • Cirulli, F., Berry, A., Chiarotti, F., & Alleva, E. (2004). Intrahippocampal administration of BDNF in adult rats affects short-term behavioral plasticity in the Morris water maze and performance in the elevated plus-maze. Hippocampus, 14(7), 802–807. https://doi.org/10.1002/hipo.10220

    Article  PubMed  Google Scholar 

  • Coelho, F. M., Pereira, D. S., Lustosa, L. P., Silva, J. P., Dias, J. M. D., Dias, R. C. D., Queiroz, B. Z., Teixeira, A. L., Teixeira, M. M., & Pereira, L. S. M. (2012). Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Archives of Gerontology and Geriatrics, 54(3), 415–420. https://doi.org/10.1016/j.archger.2011.05.014

    Article  PubMed  Google Scholar 

  • Coetsee, C., & Terblanche, E. (2017). Cerebral oxygenation during cortical activation The differential influence of three exercise training modalities A randomized controlled trial. European Journal of Applied Physiology, 117(8), 1617–1627. https://doi.org/10.1007/s00421-017-3651-8

    Article  PubMed  Google Scholar 

  • Cohen, N. J., Eichenbaum, H. (1995). Memory, amnesia and the hippocampal system. MIT Press https://doi.org/10.1136/jnnp.58.1.128-a

  • Dadkhah, M., Saadat, M., & Mohammad, A. (2023). Brain behavior and immunity integrative experimental and clinical evidence of physical exercise on BDNF and cognitive function: A comprehensive review from molecular basis to therapy. Brain Behavior and Immunity Integrative, 3, 100017. https://doi.org/10.1016/j.bbii.2023.100017

    Article  Google Scholar 

  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009

    Article  PubMed  Google Scholar 

  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135–168. https://doi.org/10.1146/annurev-psych-113011-143750

    Article  PubMed  Google Scholar 

  • Dinoff, A., Herrmann, N., Swardfager, W., Liu, C. S., Sherman, C., Chan, S., & Lanctôt, K. L. (2016). The Effect of exercise training on resting concentrations of peripheral brain-derived neurotrophic factor (BDNF): A meta-analysis. PLoS ONE, 11(9), 1–21. https://doi.org/10.1371/journal.pone.0163037

    Article  Google Scholar 

  • Egan, B., Sharples, A. P. (2022). Molecular responses to acute exercise and their relevance for adaptations in skeletal muscle to exercise training. Physiological Reviews, 2057–2170. https://doi.org/10.1152/physrev.00054.2021

  • Formica, M. B., Gianoudis, J., Nowson, C. A., O’Connell, S. L., Milte, C., Ellis, K. A., & Daly, R. M. (2020). Effect of lean red meat combined with a multicomponent exercise program on muscle and cognitive function in older adults: A 6-month randomized controlled trial. American Journal of Clinical Nutrition, 112(1), 113–128. https://doi.org/10.1093/ajcn/nqaa104

    Article  PubMed  Google Scholar 

  • Fortelny, N., Overall, C. M., Pavlidis, P., & Freue, G. V. C. (2017). Can we predict protein from mRNA levels? Nature, 547(7664), E19–E20. https://doi.org/10.1038/nature22293

    Article  PubMed  Google Scholar 

  • Friedman, D. (2011). The components of aging. In Oxford handbook of event-related potential components (pp. 513–537). Oxford University Press

  • Fujimura, H., Altar, C. A., Chen, R., Nakamura, T., Nakahashi, T., Kambayashi, J. I., Sun, B., & Tandon, N. N. (2002). Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thrombosis and Haemostasis, 87(4), 728–734. https://doi.org/10.1055/s-0037-1613072

    Article  PubMed  Google Scholar 

  • Gavin, T. P. (2009). Basal and exercise-induced regulation of skeletal muscle capillarization. Exercise and Sport Sciences Reviews, 37(2), 86–92. https://doi.org/10.1097/JES.0b013e31819c2e9b

    Article  PubMed  Google Scholar 

  • Gökçe, E., Gün, N. (2023). The relationship between exercise, cathepsin B, and cognitive functions: Systematic review. Perceptual and Motor Skills, 0(0), 003151252311769. https://doi.org/10.1177/00315125231176980

  • Hameed, M., Lange, K. H. W., Andersen, J. L., Schjerling, P., Kjaer, M., Harridge, S. D. R., & Goldspink, G. (2004). The effect of recombinant human growth hormone and resistance training on IGF-I mRNA expression in the muscles of elderly men. The Journal of Physiology, 555(1), 231–240. https://doi.org/10.1113/jphysiol.2003.051722

    Article  PubMed  Google Scholar 

  • Herold, F., Törpel, A., Schega, L., & Müller, N. G. (2019). Functional and/or structural brain changes in response to resistance exercises and resistance training lead to cognitive improvements - A systematic review. European Review of Aging and Physical Activity, 16(1), 1–33. https://doi.org/10.1186/s11556-019-0217-2

    Article  Google Scholar 

  • Hook, V., Yoon, M., Mosier, C., Ito, G., Podvin, S., Head, B. P., Rissman, R., O’Donoghue, A. J., & Hook, G. (2020). Cathepsin B in neurodegeneration of Alzheimer’s disease, traumatic brain injury, and related brain disorders. Biochimica et Biophysica Acta BBA - Proteins and Proteomics, 1868(8), 140428. https://doi.org/10.1016/j.bbapap.2020.140428

    Article  PubMed  Google Scholar 

  • Hurtado, E., Cilleros, V., Nadal, L., Simó, A., Obis, T., Garcia, N., Santafé, M. M., Tomàs, M., Halievski, K., Jordan, C. L., Lanuza, M. A., & Tomàs, J. (2017). Muscle contraction regulates bdnf/trkb signaling to modulate synaptic function through presynaptic cPKCα and cPKCβi. Frontiers in Molecular Neuroscience, 10, 1–22. https://doi.org/10.3389/fnmol.2017.00147

    Article  Google Scholar 

  • Karlsson, L., González-Alvarado, M. N., Motalleb, R., Blomgren, K., Börjesson, M., & Kuhn, H. G. (2019). Constitutive PGC-1α overexpression in skeletal muscle does not protect from age-dependent decline in neurogenesis. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-48795-w

    Article  Google Scholar 

  • Kim, S., Choi, J. Y., Moon, S., Park, D. H., Kwak, H. B., & Kang, J. H. (2019). Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflugers Archiv European Journal of Physiology, 471(3), 491–505. https://doi.org/10.1007/s00424-019-02253-8

    Article  PubMed  Google Scholar 

  • Kim, J., McKenna, C. F., Salvador, A. F., Scaroni, S. E., Askow, A. T., Cerna, J., Cannavale, C. N., Paluska, S. A., De Lisio, M., Petruzzello, S. J., Burd, N. A., & Khan, N. A. (2022). Cathepsin B and muscular strength are independently associated with cognitive control. Brain Plasticity, 1–15. https://doi.org/10.3233/bpl-210136

  • Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11(6), 229–235. https://doi.org/10.1016/j.tics.2007.04.005

    Article  PubMed  Google Scholar 

  • Kong, S., Cai, B., & Nie, Q. (2022). PGC-1α affects skeletal muscle and adipose tissue development by regulating mitochondrial biogenesis. Molecular Genetics and Genomics, 297(3), 621–633. https://doi.org/10.1007/s00438-022-01878-2

    Article  PubMed  Google Scholar 

  • Kouw, I. W. K., Holwerda, A. M., Trommelen, J., Kramer, I. F., Bastiaanse, J., Halson, S. L., Wodzig, W. K. W. H., Verdijk, L. B., & van Loon, L. J. C. (2017). Protein ingestion before sleep increases overnight muscle protein synthesis rates in healthy older men: A randomized controlled trial. Journal of Nutrition, 147(12), 2252–2261. https://doi.org/10.3945/jn.117.254532

    Article  PubMed  Google Scholar 

  • Kugler, P., & Vornberger, G. (1986). Renal cathepsin-B activities in rats after castration and treatment with sex hormones. Histochemistry, 85(2), 157–161. https://doi.org/10.1007/BF00491763

    Article  PubMed  Google Scholar 

  • Landrigan, J. F., Bell, T., Crowe, M., Clay, O. J., & Mirman, D. (2020). Lifting cognition: a meta-analysis of effects of resistance exercise on cognition. Psychological Research, 84(5), 1167–1183. https://doi.org/10.1007/s00426-019-01145-x

    Article  PubMed  Google Scholar 

  • Lau, H., Shahar, S., Mohamad, M., Rajab, N. F., Yahya, H. M., Din, N. C., & Hamid, H. A. (2019). Relationships between dietary nutrients intake and lipid levels with functional MRI dorsolateral prefrontal cortex activation. Clinical Interventions in Aging, 14, 43–51. https://doi.org/10.2147/CIA.S183425

    Article  PubMed  Google Scholar 

  • Levinger, I., Goodman, C., Matthews, V., Hare, D. L., Jerums, G., Garnham, A., & Selig, S. (2008). BDNF, metabolic risk factors, and resistance training in middle-aged individuals. Medicine and Science in Sports and Exercise, 40(3), 535–541. https://doi.org/10.1249/MSS.0b013e31815dd057

    Article  PubMed  Google Scholar 

  • Li, Y., Li, S., Wang, W., & Zhang, D. (2020). Association between dietary protein intake and cognitive function in adults aged 60 years and older. Journal of Nutrition, Health and Aging, 24(2), 223–229. https://doi.org/10.1007/s12603-020-1317-4

    Article  Google Scholar 

  • Liberman, K., Njemini, R., Forti, L. N., Cools, W., Debacq-Chainiaux, F., Kooijman, R., Beyer, I., Bautmans, I. (2022). Three months of strength training changes the gene expression of inflammation-related genes in PBMC of older women: A randomized controlled trial. Cells, 11(3). https://doi.org/10.3390/cells11030531

  • Liu-Ambrose, T. (2010). Resistance training and executive functions. Archives of Internal Medicine, 170(2), 170. https://doi.org/10.1001/archinternmed.2009.494

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu-Ambrose, T., Nagamatsu, L. S., Voss, M. W., Khan, K. M., & Handy, T. C. (2012). Resistance training and functional plasticity of the aging brain: A 12-month randomized controlled trial. Neurobiology of Aging, 33(8), 1690–1698. https://doi.org/10.1016/j.neurobiolaging.2011.05.010

    Article  PubMed  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262

    Article  PubMed  Google Scholar 

  • Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB An open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, 213. https://doi.org/10.3389/fnhum.2014.00213

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowes, D. A., Galley, H. F., Moura, A. P. S., & Webster, N. R. (2017). Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain. Behavioural Brain Research, 317, 453–460. https://doi.org/10.1016/j.bbr.2016.09.045

    Article  PubMed  Google Scholar 

  • Luck, S. J. (2005). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.

  • Mazo, C. E., Miranda, E. R., Shadiow, J., Vesia, M., Haus, J. M. (2022). High intensity acute aerobic exercise elicits alterations in circulating and skeletal muscle tissue expression of neuroprotective exerkines. Brain Plasticity, 1–14. https://doi.org/10.3233/bpl-220137

  • McKenna, C. F., Salvador, A. F., Hughes, R. L., Scaroni, S. E., Alamilla, R. A., Askow, A. T., Paluska, S. A., Dilger, A. C., Holscher, H. D., De Lisio, M., Khan, N. A., & Burd, N. A. (2021). Higher protein intake during resistance training does not potentiate strength, but modulates gut microbiota, in middle-aged adults: A randomized control trial. American Journal of Physiology - Endocrinology and Metabolism, 320(5), E900–E913. https://doi.org/10.1152/AJPENDO.00574.2020

    Article  PubMed  Google Scholar 

  • McKenna, C. F., Salvador, A. F., Keeble, A. R., Khan, N. A., De Lisio, M., Konopka, A. R., Paluska, S. A., & Burd, N. A. (2022). Muscle strength after resistance training correlates to mediators of muscle mass and mitochondrial respiration in middle-aged adults. Journal of Applied Physiology (Bethesda Md.: 1985), 133(3), 572–584. https://doi.org/10.1152/japplphysiol.00186.2022

    Article  PubMed  Google Scholar 

  • Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K., & Gómez-Pinilla, F. (2002). A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 112(4), 803–814. https://doi.org/10.1016/S0306-4522(02)00123-9

    Article  PubMed  Google Scholar 

  • Moon, H. Y., Becke, A., Berron, D., Becker, B., Sah, N., Benoni, G., Janke, E., Lubejko, S. T., Greig, N. H., Mattison, J. A., Duzel, E., & van Praag, H. (2016). Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metabolism, 24(2), 332–340. https://doi.org/10.1016/j.cmet.2016.05.025

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore, D. R., Robinson, M. J., Fry, J. L., Tang, J. E., Glover, E. I., Wilkinson, S. B., Prior, T., Tarnopolsky, M. A., & Phillips, S. M. (2009). Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. American Journal of Clinical Nutrition, 89(1), 161–168. https://doi.org/10.3945/ajcn.2008.26401

    Article  PubMed  Google Scholar 

  • Morton, R. W., Murphy, K. T., McKellar, S. R., Schoenfeld, B. J., Henselmans, M., Helms, E., Aragon, A. A., Devries, M. C., Banfield, L., Krieger, J. W., & Phillips, S. M. (2018). A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. British Journal of Sports Medicine, 52(6), 376–384. https://doi.org/10.1136/bjsports-2017-097608

    Article  PubMed  Google Scholar 

  • Mu, J. S., Li, W. P., Yao, Z. Bin, & Zhou, X. F. (1999). Deprivation of endogenous brain-derived neurotrophic factor results in impairment of spatial learning and memory in adult rats. Brain Research, 835(2). https://doi.org/10.1016/S0006-8993(99)01592-9

  • Mueller-Steiner, S., Zhou, Y., Arai, H., Roberson, E. D., Sun, B., Chen, J., Wang, X., Yu, G., Esposito, L., Mucke, L., & Gan, L. (2006). Antiamyloidogenic and neuroprotective functions of cathepsin B: Implications for Alzheimer’s disease. Neuron, 51(6), 703–714. https://doi.org/10.1016/j.neuron.2006.07.027

    Article  PubMed  Google Scholar 

  • Nicolini, C., Toepp, S., Harasym, D., Michalski, B., Fahnestock, M., Gibala, M. J., & Nelson, A. J. (2019). No changes in corticospinal excitability, biochemical markers, and working memory after six weeks of high-intensity interval training in sedentary males. Physiological Reports, 7(11). https://doi.org/10.14814/phy2.14140

  • Noda, S., Asano, Y., Akamata, K., Aozasa, N., Taniguchi, T., Takahashi, T., Ichimura, Y., Toyama, T., Sumida, H., Yanaba, K., Tada, Y., Sugaya, M., Kadono, T., & Sato, S. (2012). A possible contribution of altered cathepsin b expression to the development of skin sclerosis and vasculopathy in systemic sclerosis. PLoS ONE, 7(2) https://doi.org/10.1371/journal.pone.0032272

  • Özkaya, G. Y., Aydin, H., Toraman, F. N., Kizilay, F., Özdemir, Ö., & Cetinkaya, V. (2005). Effect of strength and endurance training on cognition in older people. Journal of Sports Science and Medicine, 4(3), 300–313.

    PubMed  PubMed Central  Google Scholar 

  • Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37(2), 127–152. https://doi.org/10.1111/1469-8986.3720127

    Article  PubMed  Google Scholar 

  • Pontifex, M. B. (2019). Stylized topographic map plugin for EEGLAB/ERPLAB. https://education.msu.edu/kin/hbcl/software.html

  • Rasmussen, P., Brassard, P., Adser, H., Pedersen, M. V., Leick, L., Hart, E., Secher, N. H., Pedersen, B. K., & Pilegaard, H. (2009). Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Experimental Physiology, 94(10), 1062–1069. https://doi.org/10.1113/expphysiol.2009.048512

    Article  PubMed  Google Scholar 

  • La Rue, A., Koehler, K. M., Wayne, S. J., Chiulli, S. J., Haaland, K. Y., & Garry, P. J. (1997). Nutritional status and cognitive functioning in a normally aging sample: a 6-y reassessment. The American journal of clinical nutrition, 65(1), 20–29. https://doi.org/10.1093/ajcn/65.1.20

  • Sánchez-Villegas, A., Galbete, C., Martinez-González, M. A., Martinez, J. A., Razquin, C., Salas-Salvadó, J., Estruch, R., Buil-Cosiales, P., & Martí, A. (2011). The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: The PREDIMED-NAVARRA randomized trial. Nutritional Neuroscience, 14(5), 195–201. https://doi.org/10.1179/1476830511Y.0000000011

    Article  PubMed  Google Scholar 

  • Sanders, A. F., & Lamers, J. M. (2002). The Eriksen flanker effect revisited. Acta Psychologica, 109(1), 41–56. https://doi.org/10.1016/s0001-6918(01)00048-8

    Article  PubMed  Google Scholar 

  • Schiffer, T., Schulte, S., Hollmann, W., Bloch, W., & Strüder, H. K. (2009). Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Métabolisme, 41(3), 250–254 https://doi.org/10.1055/s-0028-1093322

  • Severinsen, M. C. K., & Pedersen, B. K 2020 Muscle–organ crosstalk: The emerging roles of myokines. Endocrine Reviews, 41(4), 594–609 https://doi.org/10.1210/ENDREV/BNAA016

  • Siong, Z., Ashleigh, C., Helen, T. M., Wei, M., & Teo, P. (2021). The central mechanisms of resistance training and its effects on cognitive function. Sports Medicine, 51(12), 2483–2506. https://doi.org/10.1007/s40279-021-01535-5

    Article  Google Scholar 

  • Stomby, A., Otten, J., Ryberg, M., Nyberg, L., Olsson, T., Boraxbekk, C. J (2017) A paleolithic diet with and without combined aerobic and resistance exercise increases functional brain responses and hippocampal volume in subjects with type 2 diabetes. Frontiers in Aging Neuroscience, 9, 1–10 https://doi.org/10.3389/fnagi.2017.00391

  • Subar, A. F., Kirkpatrick, S. I., Mittl, B., Zimmerman, T. P., Thompson, F. E., Bingley, C., Willis, G., Islam, N. G., Baranowski, T., McNutt, S., & Potischman, N. (2012). The Automated Self-Administered 24-Hour Dietary Recall (ASA24): A resource for researchers, clinicians, and educators from the National Cancer Institute. Journal of the Academy of Nutrition and Dietetics, 112(8), 1134–1137. https://doi.org/10.1016/j.jand.2012.04.016

    Article  PubMed  PubMed Central  Google Scholar 

  • Suijo, K., Inoue, S., Ohya, Y., Odagiri, Y., Takamiya, T., Ishibashi, H., Itoh, M., Fujieda, Y., & Shimomitsu, T. (2013). Resistance exercise enhances cognitive function in mouse. International Journal of Sports Medicine, 34(4), 368–375. https://doi.org/10.1055/s-0032-1323747

    Article  PubMed  Google Scholar 

  • Sung, K.-Y., Kang, S., Park, J. Y., & Park, K. M. (2017). Effects of myokine factors on exercise types in obese women Exercise. Science, 26(4), 275–280. https://doi.org/10.15857/ksep.2017.26.4.275

    Article  Google Scholar 

  • Tripepi, G., Chesnaye, N. C., Dekker, F. W., Zoccali, C., & Jager, K. J. (2020). Intention to treat and per protocol analysis in clinical trials. Nephrology, 25(7), 513–517. https://doi.org/10.1111/nep.13709

    Article  PubMed  Google Scholar 

  • van de Rest, O., van der Zwaluw, N. L., Tieland, M., Adam, J. J., Hiddink, G. J., van Loon, L. J. C., & de Groot, L. C. P. G. M. (2014). Effect of resistance-type exercise training with or without protein supplementation on cognitive functioning in frail and pre-frail elderly: Secondary analysis of a randomized, double-blind, placebo-controlled trial. Mechanisms of Ageing and Development, 136–137, 85–93. https://doi.org/10.1016/j.mad.2013.12.005

    Article  PubMed  Google Scholar 

  • Van Der Zwaluw, N. L., Van De Rest, O., Tieland, M., Adam, J. J., Hiddink, G. J., Van Loon, L. J. C., & De Groot, L. C. P. G. M. (2014). The impact of protein supplementation on cognitive performance in frail elderly. European Journal of Nutrition, 53(3), 803–812. https://doi.org/10.1007/s00394-013-0584-9

    Article  PubMed  Google Scholar 

  • Walsh, J. J., & Tschakovsky, M. E. (2018). Exercise and circulating bdnf: Mechanisms of release and implications for the design of exercise interventions. Applied Physiology, Nutrition and Metabolism, 43(11), 1095–1104. https://doi.org/10.1139/apnm-2018-0192

    Article  Google Scholar 

  • Wen, H. J., Liu, S. H., & Tsai, C. L. (2022). Effects of 12 weeks of aerobic exercise combined with resistance training on neurocognitive performance in obese women. Journal of Exercise Science and Fitness, 20(4), 291–304. https://doi.org/10.1016/j.jesf.2022.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan, Z. (2009). Exercise, PGC-1α, and metabolic adaptation in skeletal muscle. Applied Physiology, Nutrition and Metabolism, 34(3), 424–427. https://doi.org/10.1139/H09-030

    Article  Google Scholar 

  • Yarrow, J. F., White, L. J., McCoy, S. C., & Borst, S. E. (2010). Training augments resistance exercise induced elevation of circulating brain derived neurotrophic factor (BDNF). Neuroscience Letters, 479(2), 161–165. https://doi.org/10.1016/j.neulet.2010.05.058

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Cattlemen’s Beef Association. The sponsor was only involved in financial support of the project, and was not involved in the design, data collection, and analysis, nor interpretation and dissemination of this report.

Author information

Authors and Affiliations

Authors

Contributions

M.D.L., S.J.P., N.A.B., and N.A.K. conceived and planned the experiments. C.F.M., A.T.A., A.F.S., S.E.S., S.A.P., J.C., C.N.C., and N.A.B. performed the experiments. J.K., J.C., C.N.C., and N.A.K. analyzed the results. J.K. and N.A.K. interpreted the results of experiments and drafted the manuscript. J.K., C.F.M., A.T.A., A.F.S., S.E.S., J.C., C.N.C., S.A.P., M.D.L., S.J.P., N.A.B., and N.A.K. edited and revised the manuscript. J.K., C.F.M., A.T.A., A.F.S., S.E.S., J.C., C.N.C., S.A.P., M.D.L., S.J.P., N.A.B., and N.A.K. approved the final version of the manuscript.

Corresponding author

Correspondence to Naiman A. Khan.

Ethics declarations

Conflict of Interest

In addition to grant support, Dr. Michael De Lisio, Dr. Nicholas Burd, and Dr. Naiman Khan have received honorarium support from the National Cattlemen’s Beef Association. The remaining authors have no competing interests to declare that are relevant to the contents of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., McKenna, C.F., Askow, A.T. et al. Higher Protein Intake does not Modulate Resistance Training–Induced Changes in Myokines and Cognitive Function in Middle-Aged Adults. J Cogn Enhanc 8, 76–94 (2024). https://doi.org/10.1007/s41465-024-00285-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-024-00285-2

Keywords

Navigation