Skip to main content
Log in

Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on Conflict-Related Behavioral Performance and Frontal Midline Theta Activity

  • Original Research
  • Published:
Journal of Cognitive Enhancement Aims and scope Submit manuscript

Abstract

Several previous studies have highlighted the potential of transcutaneous vagus nerve stimulation (tVNS) to enhance executive control of action. In the present study, we tested for effects of tVNS on behavioral performance and frontal midline theta activity during response conflicts. Frontal midline theta reflects transient activation of the posterior midfrontal cortex in situations requiring increased executive control of action. It is an established marker for top-down action control. We carried out a combined behavioral and electroencephalography (EEG) within-subjects experimental study employing a cued go–no-go-change task. Twenty-two healthy young adults participated. We found that tVNS enhanced global behavioral accuracy, i.e., decreased the proportion of erroneous and missed responses, compared with sham (placebo) stimulation, and reduced conflict costs on behavioral performance in go/change response conflicts. Furthermore, in trials eliciting go/stop conflicts, frontal midline theta was enhanced under tVNS. These findings corroborate the potential of tVNS to enhance executive control of action. For the first time, we show an effect of tVNS on frontal midline theta activity, which suggests that tVNS specifically interacts with the neural mechanisms underlying action control. We conclude that tVNS is a promising method to enhance executive control and recommend the further investigation of tVNS as a candidate treatment of clinically relevant executive control deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asada, H., Fukuda, Y., Tsunoda, S., Yamaguchi, M., & Tonoike, M. (1999). Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and anterior cingulate cortex in humans. Neuroscience Letters, 274(1), 29–32.

    PubMed  Google Scholar 

  • Aston-Jones, G., & Cohen, J. D. (2005). An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annual Review of Neuroscience, 28, 403–450.

    PubMed  Google Scholar 

  • Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412.

    Google Scholar 

  • Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68(3), 255–278.

    Google Scholar 

  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 48.

    Google Scholar 

  • Bauer, S., Baier, H., Baumgartner, C., Bohlmann, K., Fauser, S., Graf, W., et al. (2016). Transcutaneous Vagus Nerve Stimulation (tVNS) for treatment of drug-resistant epilepsy: a randomized, double-blind clinical trial (cMPsE02). Brain Stimulation, 9(3), 356–363.

    PubMed  Google Scholar 

  • Baumeister, R. F. (2002). Ego depletion and self-control failure: an energy model of the self’s executive function. Self and Identity, 1(2), 129–136.

    Google Scholar 

  • Ben-Menachem, E., Hamberger, A., Hedner, T., Hammond, E. J., Uthman, B. M., Slater, J., et al. (1995). Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Research, 20(3), 221–227.

    PubMed  Google Scholar 

  • Bermejo, P., López, M., Larraya, I., Chamorro, J., Cobo, J. L., Ordóñez, S., et al. (2017). Innervation of the human cavum conchae and auditory canal: anatomical basis for transcutaneous auricular nerve stimulation. BioMed Research International, 2017, 7830919.

    PubMed  PubMed Central  Google Scholar 

  • Beste, C., Steenbergen, L., Sellaro, R., Grigoriadou, S., Zhang, R., Chmielewski, W., et al. (2016). Effects of Concomitant Stimulation of the GABAergic and Norepinephrine System on Inhibitory Control ??? A Study Using Transcutaneous Vagus Nerve Stimulation. Brain Stimulation, 9(6), 811–818.

    PubMed  Google Scholar 

  • Borovikova, L.V., Ivanova, S., Zhang, M., Yang, H., Botchkina, G.I., Watkins, L.R., et al. (2000). Vagus nerve stimulation attenuates the systemic in¯ammatory response to endotoxin. 405, 5.

  • Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Sciences, 8(12), 539–546.

    PubMed  Google Scholar 

  • Broncel, A., Bocian, R., Kłos-Wojtczak, P., & Konopacki, J. (2018). Medial septal cholinergic mediation of hippocampal theta rhythm induced by vagal nerve stimulation. PLoS ONE, 13(11), e0206532.

    PubMed  PubMed Central  Google Scholar 

  • Broncel, A., Bocian, R., Kłos-Wojtczak, P., & Konopacki, J. (2019). GABAergic mediation of hippocampal theta rhythm induced by stimulation of the vagal nerve. Brain Research Bulletin, 147, 110–123.

    PubMed  Google Scholar 

  • Brown, T. E., & Landgraf, J. M. (2010). Improvements in executive function correlate with enhanced performance and functioning and health-related quality of life: evidence from 2 large, double-blind, randomized, placebo-controlled trials in ADHD. Postgraduate Medicine, 122(5), 42–51.

    PubMed  Google Scholar 

  • Capone, F., Assenza, G., Di Pino, G., Musumeci, G., Ranieri, F., Florio, L., et al. (2015). The effect of transcutaneous vagus nerve stimulation on cortical excitability. Journal of Neural Transmission, 122(5), 679–685.

    PubMed  Google Scholar 

  • Cavanagh, J. F., & Frank, M. J. (2014). Frontal theta as a mechanism for cognitive control. Trends in Cognitive Sciences, 18(8), 414–421.

    PubMed  PubMed Central  Google Scholar 

  • Cavanagh, J. F., & Shackman, A. J. (2015). Frontal midline theta reflects anxiety and cognitive control: Meta-analytic evidence. Journal of Physiology, Paris, 109(1), 3–15.

    PubMed  Google Scholar 

  • Cavanagh, J. F., Frank, M. J., Klein, T. J., & Allen, J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. NeuroImage., 49(4), 3198–3209.

    PubMed  Google Scholar 

  • Cavanagh, J. F., Zambrano-Vazquez, L., & Allen, J. J. B. (2012). Theta lingua franca: a common mid-frontal substrate for action monitoring processes. Psychophysiology, 49(2), 220–238.

    PubMed  Google Scholar 

  • Cavanagh, J. F., Eisenberg, I., Guitart-Masip, M., Huys, Q., & Frank, M. J. (2013). Frontal Theta Overrides Pavlovian Learning Biases. The Journal of Neuroscience, 33(19), 8541–8548.

    PubMed  PubMed Central  Google Scholar 

  • Chakravarthy, K., Chaudhry, H., Williams, K., & Christo, P. J. (2015). Review of the uses of vagal nerve stimulation in chronic pain management. Current Pain and Headache Reports, 19(12), 54.

    PubMed  Google Scholar 

  • Cohen, M. X. (2014). A neural microcircuit for cognitive conflict detection and signaling. Trends in Neurosciences, 37(9), 480–490.

    PubMed  Google Scholar 

  • Cohen, M. X., & Donner, T. H. (2013). Midfrontal conflict-related theta-band power reflects neural oscillations that predict behavior. Journal of Neurophysiology, 110(12), 2752–2763.

    PubMed  Google Scholar 

  • Cotrena, C., Branco, L. D., Shansis, F. M., & Fonseca, R. P. (2016). Executive function impairments in depression and bipolar disorder: association with functional impairment and quality of life. Journal of Affective Disorders, 190, 744–753.

    PubMed  Google Scholar 

  • Fischer, R., Ventura-Bort, C., Hamm, A., & Weymar, M. (2018a Aug). Transcutaneous vagus nerve stimulation (tVNS) enhances conflict-triggered adjustment of cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 18(4), 680–693.

    Google Scholar 

  • Fischer, A. G., Nigbur, R., Klein, T. A., Danielmeier, C., & Ullsperger, M. (2018b). Cortical beta power reflects decision dynamics and uncovers multiple facets of post-error adaptation. Nature Communications, 9(1), 5038.

    PubMed  PubMed Central  Google Scholar 

  • Frangos, E., Ellrich, J., & Komisaruk, B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimulation, 8(3), 624–636.

    PubMed  Google Scholar 

  • Frank, M. J., Woroch, B. S., & Curran, T. (2005). Error-related negativity predicts reinforcement learning and conflict biases. Neuron, 47(4), 495–501.

    PubMed  Google Scholar 

  • Frömer, R., Maier, M., & Rahman, R. A. (2018). Group-level EEG-processing pipeline for flexible single trial-based analyses including linear mixed models. Frontiers in Neuroscience, 12, 48.

  • Gevins, A. (1997). High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral Cortex, 7(4), 374–385.

    PubMed  Google Scholar 

  • Greene, J. D., Hodges, J. R., & Baddeley, A. D. (1995). Autobiographical memory and executive function in early dementia of Alzheimer type. Neuropsychologia, 33(12), 1647–1670.

    PubMed  Google Scholar 

  • Hajihosseini, A., & Holroyd, C. B. (2013). Frontal midline theta and N200 amplitude reflect complementary information about expectancy and outcome evaluation: Frontal theta and N200 provide distinct information. Psychophysiology., 50(6), 550–562.

    PubMed  Google Scholar 

  • Hall, S.D., Barnes, G.R., Furlong, P.L., Seri, S., Hillebrand, A. (2009). Neuronal network pharmacodynamics of GABAergic modulation in the human cortex determined using pharmaco-magnetoencephalography. Human Brain Mapping, n/a–n/a.

  • Hein, E., Nowak, M., Kiess, O., Biermann, T., Bayerlein, K., Kornhuber, J., et al. (2013). Auricular transcutaneous electrical nerve stimulation in depressed patients: A randomized controlled pilot study. Journal of Neural Transmission, 120(5), 821–827.

    PubMed  Google Scholar 

  • Hofmann, W., Schmeichel, B. J., & Baddeley, A. D. (2012). Executive functions and self-regulation. Trends in Cognitive Sciences, 16(3), 174–180.

    PubMed  Google Scholar 

  • Hornberger, M., Piguet, O., Kipps, C., & Hodges, J. R. (2008). Executive function in progressive and nonprogressive behavioral variant frontotemporal dementia. Neurology, 71(19), 1481–1488.

    PubMed  Google Scholar 

  • Hsieh, L.-T., Ranganath, C. (2014). Frontal midline theta oscillations during working memory maintenance and episodic encoding and retrieval. NeuroImage, 85(0 2). [cited 2019 Apr 10]. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859771/.

  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4–5), 411–430.

    PubMed  Google Scholar 

  • Jaeger, T. F. (2008). Categorical data analysis: away from ANOVAs (transformation or not) and towards logit mixed models. Journal of Memory and Language, 59(4), 434–446.

    PubMed  PubMed Central  Google Scholar 

  • Keute, M., Ruhnau, P., Heinze, H.-J., Zaehle, T. (2018a). Behavioral and electrophysiological evidence for GABAergic modulation through transcutaneous vagus nerve stimulation. Clinical Neurophysiology.

  • Keute, M., Ruhnau, P., & Zaehle, T. (2018b). Reply to “Reconsidering sham in transcutaneous vagus nerve stimulation studies”. Clin Neurophysiol Off J Int Fed Clin Neurophysiol., 129(11), 2503.

    Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29(2), 169–195.

    PubMed  Google Scholar 

  • Lehtimäki, J., Hyvärinen, P., Ylikoski, M., Bergholm, M., Mäkelä, J. P., Aarnisalo, A., et al. (2013). Transcutaneous vagus nerve stimulation in tinnitus: a pilot study. Acta Otolaryngol (Stockh)., 133(4), 378–382.

    Google Scholar 

  • Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., Ragland, J. D., et al. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. NeuroImage Clinical, 2, 590–599.

    PubMed  PubMed Central  Google Scholar 

  • Liebrand, M., Kristek, J., Tzvi, E., & Krämer, U. M. (2018). Ready for change: oscillatory mechanisms of proactive motor control. PLoS One, 13(5), e0196855.

    PubMed  PubMed Central  Google Scholar 

  • Logan, G. D. (1985). Executive control of thought and action. Acta Psychologica, 60(2–3), 193–210.

    Google Scholar 

  • Luu, P., Tucker, D. M., & Makeig, S. (2004). Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clinical Neurophysiology, 115(8), 1821–1835.

    PubMed  Google Scholar 

  • Manard, M., François, S., Phillips, C., Salmon, E., & Collette, F. (2017). The neural bases of proactive and reactive control processes in normal aging. Behavioural Brain Research, 320, 504–516.

    PubMed  Google Scholar 

  • McKinlay, A., Grace, R. C., Dalrymple-Alford, J. C., & Roger, D. (2010). Characteristics of executive function impairment in Parkinson’s disease patients without dementia. Journal of the International Neuropsychological Society, 16(2), 268–277.

    PubMed  Google Scholar 

  • Mitchell, D. J., McNaughton, N., Flanagan, D., & Kirk, I. J. (2008). Frontal-midline theta from the perspective of hippocampal “theta”. Progress in Neurobiology, 86(3), 156–185.

    PubMed  Google Scholar 

  • Ness, K. K., Gurney, J. G., Zeltzer, L. K., Leisenring, W., Mulrooney, D. A., Nathan, P. C., et al. (2008). The impact of limitations in physical, executive, and emotional function on health-related quality of life among adult survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Archives of Physical Medicine and Rehabilitation, 89(1), 128–136.

    PubMed  Google Scholar 

  • Nichols, J. A., Nichols, A. R., Smirnakis, S. M., Engineer, N. D., Kilgard, M. P., & Atzori, M. (2011). Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors. Neuroscience, 189, 207–214.

    PubMed  Google Scholar 

  • Nigbur, R., Ivanova, G., & Stürmer, B. (2011). Theta power as a marker for cognitive interference. Clinical Neurophysiology, 122(11), 2185–2194.

    PubMed  Google Scholar 

  • Onton, J., Delorme, A., & Makeig, S. (2005). Frontal midline EEG dynamics during working memory. Clinical Neurophysiology, 27(2), 341–356.

  • Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.-M. (2011). FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, 1.

    Google Scholar 

  • Ozonoff, S., & Jensen, J. (1999). Brief report: Specific executive function profiles in three neurodevelopmental disorders. Journal of Autism and Developmental Disorders, 29(2), 171–177.

    PubMed  Google Scholar 

  • Peuker, E. T., & Filler, T. J. (2002). The nerve supply of the human auricle. Clinical Anatomy, 15(1), 35–37.

    PubMed  Google Scholar 

  • Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron., 76(1), 116–129.

    PubMed  PubMed Central  Google Scholar 

  • Pinner, J. F. L., & Cavanagh, J. F. (2017). Frontal theta accounts for individual differences in the cost of conflict on decision making. Brain Research, 1672, 73–80.

    PubMed  PubMed Central  Google Scholar 

  • Posner, M. I., Snyder, C. R., & Solso, R. (2004). Attention and cognitive control. Cognitive Psychology Key Read, 205.

  • Quetscher, C., Yildiz, A., Dharmadhikari, S., Glaubitz, B., Schmidt-Wilcke, T., Dydak, U., et al. (2015). Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Structure & Function, 220(6), 3555–3564.

    Google Scholar 

  • Raedt, R., Clinckers, R., Mollet, L., Vonck, K., Tahry, R. E., Wyckhuys, T., et al. (2011). Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. Journal of Neurochemistry, 117(3), 461–469.

    PubMed  Google Scholar 

  • Sellaro, R., van Leusden, J. W. R., Tona, K.-D., Verkuil, B., Nieuwenhuis, S., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation enhances post-error slowing. Journal of Cognitive Neuroscience, 27(11), 2126–2132.

    PubMed  Google Scholar 

  • Sherman, E. M. S., Slick, D. J., & Eyrl, K. L. (2006). Executive dysfunction is a significant predictor of poor quality of life in children with epilepsy. Epilepsia, 47(11), 1936–1942.

    PubMed  Google Scholar 

  • Skirrow, C., McLoughlin, G., Banaschewski, T., Brandeis, D., Kuntsi, J., & Asherson, P. (2015). Normalisation of frontal theta activity following methylphenidate treatment in adult attention-deficit/hyperactivity disorder. European Neuropsychopharmacology, 25(1), 85–94.

    PubMed  Google Scholar 

  • Steenbergen, L., Sellaro, R., Stock, A. K., Verkuil, B., Beste, C., & Colzato, L. S. (2015). Transcutaneous vagus nerve stimulation (tVNS) enhances response selection during action cascading processes. European Neuropsychopharmacology, 25(6), 773–778.

    PubMed  Google Scholar 

  • Ventura-Bort, C., Wirkner, J., Genheimer, H., Wendt, J., Hamm, A.O., Weymar, M. (2018). Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and Alpha-amylase level: a pilot study. Frontiers in Human Neuroscience. [cited 2019 Mar 15];12. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6021745/.

  • Wang, C.-H., Lo, Y.-H., Pan, C.-Y., Chen, F.-C., Liang, W.-K., & Tsai, C.-L. (2015). Frontal midline theta as a neurophysiological correlate for deficits of attentional orienting in children with developmental coordination disorder. Psychophysiology, 52(6), 801–812.

    PubMed  Google Scholar 

  • Warren, C. M., Tona, K. D., Ouwerkerk, L., Van Paridon, J., Poletiek, F., van Steenbergen, H., et al. (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimulation, 12(3), 635–642.

    PubMed  Google Scholar 

  • Weinstein, A. M., Voss, M. W., Prakash, R. S., Chaddock, L., Szabo, A., White, S. M., et al. (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain, Behavior, and Immunity, 26(5), 811–819.

    PubMed  Google Scholar 

  • Willcutt, E. G., Doyle, A. E., Nigg, J. T., Faraone, S. V., & Pennington, B. F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: a meta-analytic review. Biological Psychiatry, 57(11), 1336–1346.

    PubMed  Google Scholar 

  • Yakunina, N., Kim, S. S., & Nam, E.-C. (2017). Optimization of transcutaneous vagus nerve stimulation using functional MRI. Neuromodulation Technol Neural Interface, 20(3), 290–300.

    Google Scholar 

  • Zeng, Q., Qi, S., Li, M., Yao, S., Ding, C., & Yang, D. (2017). Enhanced conflict-driven cognitive control by emotional arousal, not by valence. Cognition & Emotion, 31(6), 1083–1096.

    Google Scholar 

Download references

Funding

The work was funded by the Deutsche Forschungsgemeinschaft Sonderforschungsbereich Grant, SFB-779, TPA02, and the federal state of Saxony-Anhalt and the “European Regional Development Fund“ (ERDF 2014-2020), Vorhaben: Center for Behavioral Brain Sciences (CBBS), FKZ: ZS/2016/04/78113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tino Zaehle.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1728 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keute, M., Barth, D., Liebrand, M. et al. Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on Conflict-Related Behavioral Performance and Frontal Midline Theta Activity. J Cogn Enhanc 4, 121–130 (2020). https://doi.org/10.1007/s41465-019-00152-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41465-019-00152-5

Keywords

Navigation