Angrist, J. D., Imbens, G. W., & Rubin, D. B. (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association, 91, 444–455. https://doi.org/10.1080/01621459.1996.10476902.
Article
Google Scholar
Arias, E., Heron, M., & Xu, J. (2017). United States life tables, 2014. National Vital Statistics Reports, 66(4), 1–64.
PubMed
Google Scholar
Bielak, A. A. M., & Brydges, C. R. (2018). Can intraindividual variability in cognitive speed be reduced by physical exercise? Results from the LIFE Study. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences. Advance online publication. https://doi.org/10.1093/geronb/gby101.
Article
Google Scholar
Bielak, A. A. M., Cherbuin, N., Bunce, D., & Anstey, K. J. (2014). Intraindividual variability is a fundamental phenomenon of aging: evidence from an 8-year longitudinal study across young, middle, and older adulthood. Developmental Psychology, 50, 143–151. https://doi.org/10.1037/a0032650.
Article
PubMed
Google Scholar
Bielak, A. A. M., Hughes, T. F., Small, B. J., & Dixon, R. A. (2007). It’s never too late to engage in lifestyle activities: significant concurrent but not change relationships between lifestyle activities and cognitive speed. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 62(6), P331–P339. https://doi.org/10.1093/geronb/62.6.P331.
Article
Google Scholar
Bielak, A. A. M., Hultsch, D. F., Strauss, E., MacDonald, S. W. S., & Hunter, M. A. (2010a). Intraindividual variability in reaction time predicts cognitive outcomes 5 years later. Neuropsychology, 24, 731–741. https://doi.org/10.1037/a0019802.
Article
PubMed
Google Scholar
Bielak, A. A. M., Hultsch, D. F., Strauss, E., MacDonald, S. W. S., & Hunter, M. A. (2010b). Intraindividual variability is related to cognitive change in older adults: evidence for within-person coupling. Psychology and Aging, 25, 575–586. https://doi.org/10.1037/a0019503.
Article
PubMed
Google Scholar
Brydges, C. R., & Bielak, A. A. M. (2019). A Bayesian analysis of evidence in support of the null hypothesis in gerontological psychology (or lack thereof). Journals of Gerontology Series B: Psychological Sciences and Social Sciences. Advance online publication. https://doi.org/10.1093/geronb/gbz033.
Bunce, D., MacDonald, S. W. S., & Hultsch, D. F. (2004). Inconsistency in serial choice decision and motor reaction times dissociate in younger and older adults. Brain and Cognition, 56, 320–327. https://doi.org/10.1016/j.bandc.2004.08.006.
Article
PubMed
Google Scholar
Bunce, D., Tzur, M., Ramchurn, A., Gain, F., & Bond, F. W. (2008). Mental health and cognitive function in adults aged 18 to 92 years. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 63(2), P67–P74. https://doi.org/10.1093/geronb/63.2.P67.
Article
Google Scholar
Burns, R. A., Butterworth, P., Kiely, K. M., Bielak, A. A. M., Luszcz, M. A., Mitchell, P., et al. (2011). Multiple imputation was an efficient method for harmonizing the Mini-Mental State Examination with missing item-level data. Journal of Clinical Epidemiology, 64, 787–793. https://doi.org/10.1016/j.jclinepi.2010.10.011.
Article
PubMed
Google Scholar
Carlson, M. C., Saczynski, J. S., Rebok, G. W., Seeman, T., Glass, T. A., McGill, S., et al. (2008). Exploring the effects of an “everyday” activity program on executive function and memory in older adults: experience Corps®. The Gerontologist, 48(6), 793–801. https://doi.org/10.1093/geront/48.6.793.
Article
PubMed
Google Scholar
Christensen, H., Dear, K. B., Anstey, K. J., Parslow, R. A., Sachdev, P., & Jorm, A. F. (2005). Within-occasion intraindividual variability and preclinical diagnostic status: is intraindividual variability an indicator of mild cognitive impairment? Neuropsychology, 19, 309–317. https://doi.org/10.1037/0894-4105.19.3.309.
Article
PubMed
Google Scholar
Dixon, R. A., Garrett, D. D., Lentz, T. L., MacDonald, S. W. S., Strauss, E., & Hultsch, D. F. (2007). Neurocognitive markers of cognitive impairment: exploring the roles of speed and inconsistency. Neuropsychology, 21, 381–399. https://doi.org/10.1037/0894-4105.21.3.381.
Article
PubMed
Google Scholar
Dodge, H. H., Mattek, N. C., Austin, D., Hayes, T. L., & Kaye, J. A. (2012). In-home walking speeds and variability trajectories associated with mild cognitive impairment. Neurology, 78, 1946–1952. https://doi.org/10.1212/WNL.0b013e318259e1de.
Article
PubMed
PubMed Central
Google Scholar
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189–198. https://doi.org/10.1016/0022-3956(75)90026-6.
Article
PubMed
Google Scholar
Garrett, D. D., MacDonald, S. W. S., & Craik, F. I. (2012). Intraindividual reaction time variability is malleable: feedback-and education-related reductions in variability with age. Frontiers in Human Neuroscience, 6, 101. https://doi.org/10.3389/fnhum.2012.00101.
Article
PubMed
PubMed Central
Google Scholar
Green, C. S., Bavelier, D., Kramer, A. F., Vinogradov, S., Ansorage, U., Ball, K. K., et al. (2019). Improving methodological standards in behavioral interventions for cognitive enhancement. Journal of Cognitive Enhancement. Advance online publication.
https://doi.org/10.1007/s41465-018-0115-y.
Article
Google Scholar
Hambrick, D. Z., Salthouse, T. A., & Meinz, E. J. (1999). Predictors of crossword puzzle proficiency and moderators of age–cognition relations. Journal of Experimental Psychology: General, 128, 131–164. https://doi.org/10.1037/0096-3445.128.2.131.
Article
Google Scholar
Haynes, B. I., Bauermeister, S., & Bunce, D. (2017). A systematic review of longitudinal associations between reaction time intraindividual variability and age-related cognitive decline or impairment, dementia, and mortality. Journal of the International Neuropsychological Society, 23, 431–445. https://doi.org/10.1017/S1355617717000236.
Article
PubMed
Google Scholar
Hertzog, C., Kramer, A. F., Wilson, R. S., & Lindenberger, U. (2008). Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychological Science in the Public Interest, 9(1), 1–65. https://doi.org/10.1111/j.1539-6053.2009.01034.x.
Article
PubMed
Google Scholar
Holtzer, R., Mahoney, J., & Verghese, J. (2013). Intraindividual variability in executive functions but not speed of processing or conflict resolution predicts performance differences in gait speed in older adults. Journals of Gerontology: Series A, 69, 980–986. https://doi.org/10.1093/gerona/glt180.
Article
Google Scholar
Hultsch, D. F., MacDonald, S. W. S., Hunter, M. A., Levy-Bencheton, J., & Strauss, E. (2000). Intraindividual variability in cognitive performance in older adults: comparison of adults with mild dementia, adults with arthritis, and healthy adults. Neuropsychology, 14, 588–598. https://doi.org/10.1037/0894-4105.14.4.588.
Article
PubMed
Google Scholar
Hultsch, D. F., Strauss, E., Hunter, M. A., & MacDonald, S. W. S. (2008). Intraindividual variability, cognition, and aging. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (3rd ed.) (pp. 491–556). New York: Psychology Press.
JASP Team (2019). JASP (version 0.9.2) [computer software]. Retrieved from https://jasp-stats.org
Jeffreys, H. (1961). The theory of probability. Oxford: Oxford University Press.
Google Scholar
Jo, B. (2002). Estimation of intervention effects with noncompliance: alternative model specifications. Journal of Educational and Behavioral Statistics, 27, 385–409. https://doi.org/10.3102/10769986027004385.
Article
Google Scholar
Jo, B., & Muthén, B. O. (2001). Modeling of intervention effects with noncompliance: a latent variable approach for randomized trials. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 57–87). Mahwah: Lawrence Erlbaum Associates Retrieved from https://bayanbox.ir/view/200404392677735696/Marcoulides-Schumacker-new-Development-and-Techniques-in-Structural-Equation-Modeling.pdf#page=78.
Google Scholar
Joly-Burra, E., van der Linden, M., & Ghisletta, P. (2018). Intraindividual variability in inhibition and prospective memory in healthy older adults: insights from response regularity and rapidity. Journal of Intelligence, 6(1), 13. https://doi.org/10.3390/jintelligence6010013.
Article
PubMed Central
Google Scholar
Karr, J. E., Areshenkoff, C. N., Rast, P., & Garcia-Barrera, M. A. (2014). An empirical comparison of the therapeutic benefits of physical exercise and cognitive training on the executive functions of older adults: a meta-analysis of controlled trials. Neuropsychology, 28, 829–845. https://doi.org/10.1037/neu0000101.
Article
PubMed
Google Scholar
Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: a systematic review and meta-analysis. Ageing Research Reviews, 15, 28–43. https://doi.org/10.1016/j.arr.2014.02.004.
Article
PubMed
Google Scholar
Li, S.-C., Aggen, S. H., Nesselroade, J. R., & Baltes, P. B. (2001). Short-term fluctuations in elderly people’s sensorimotor functioningpredict text and spatial memory performance: the MacArthur successful aging studies. Gerontology, 47, 100–116. https://doi.org/10.1159/000052782.
Article
PubMed
Google Scholar
Li, S.-C., & Lindenberger, U. (1999). Cross-level unification: a computational exploration of the link between deterioration of neurotransmitter systems and dedifferentiation of cognitive abilities in old age. In L. G. Nilsson & H. J. Markowitsch (Eds.), Cogntive neuroscience of memory (pp. 103–146). Seattle, WA: Hogrefe & Huber.
Google Scholar
Lodi-Smith, J., & Park, D. C. (2011). Synapse: a clinical trial examining the impact of actively engaging the aging mind. In P. E. Hartman-Stein & A. La Rue (Eds.), Enhancing cognitive fitness in adults: a guide to the use and development of community-based programs (pp. 67–83). New York, NY: Springer Retrieved from https://www.researchgate.net/profile/Thomas_Meuser/publication/227035396_Oral_Life_Review_in_Older_Adults_Principles_for_the_Social_Service_Professional/links/0deec53275ad5df8d6000000.pdf.
Chapter
Google Scholar
MacDonald, S. W. S., Hultsch, D. F., & Bunce, D. (2006a). Intraindividual variability in vigilance performance: does degrading visual stimuli mimic age-related “neural noise”? Journal of Clinical and Experimental Neuropsychology, 28, 655–675. https://doi.org/10.1080/13803390590954245.
Article
PubMed
Google Scholar
MacDonald, S. W. S., Li, S.-C., & Bäckman, L. (2009). Neural underpinnings of within-person variability in cognitive functioning. Psychology and Aging, 24, 792–808. https://doi.org/10.1037/a0017798.
Article
PubMed
Google Scholar
MacDonald, S. W., Nyberg, L., & Bäckman, L. (2006b). Intra-individual variability in behavior: links to brain structure, neurotransmission and neuronal activity. Trends in Neurosciences, 29, 474–480. https://doi.org/10.1016/j.tins.2006.06.011.
Article
PubMed
Google Scholar
MacDonald, S. W. S., & Stawski, R. S. (2015). Intraindividual variability–an indicator of vulnerability or resilience in adult development and aging? In M. Diehl, K. Hooker, & M. J. Sliwinski (Eds.), Handbook of intraindividual variability across the lifespan (pp. 231–257). New York: Routledge/Taylor & Francis Group. https://doi.org/10.4324/9780203113066.ch13.
Chapter
Google Scholar
Mella, N., Fagot, D., Renaud, O., Kliegel, M., & de Ribaupierre, A. (2018). Individual differences in developmental change: quantifying the amplitude and heterogeneity in cognitive change across old age. Journal of Intelligence, 6(1), 10. https://doi.org/10.3390/jintelligence6010010.
Article
PubMed Central
Google Scholar
Muthén, L. K., & Muthén, B. O. (1998-2017). Mplus user’s guide (8th ed.). Los Angeles: Muthén & Muthén.
Google Scholar
Park, D. C., Lodi-Smith, J., Drew, L., Haber, S., Hebrank, A., Bischof, G. N., & Aamodt, W. (2014). The impact of sustained engagement on cognitive function in older adults: the synapse project. Psychological Science, 25, 103–112. https://doi.org/10.1177/0956797613499592.
Article
PubMed
Google Scholar
Peugh, J. L., Strotman, D., McGrady, M., Rausch, J., & Kashikar-Zuck, S. (2017). Beyond intent to treat (ITT): a complier average causal effect (CACE) estimation primer. Journal of School Psychology, 60, 7–24. https://doi.org/10.1016/j.jsp.2015.12.006.
Article
PubMed
Google Scholar
Proulx, C. M., Curl, A. L., & Ermer, A. E. (2017). Longitudinal associations between formal volunteering and cognitive functioning. The Journals of Gerontology: Series B, 73, 522–531. https://doi.org/10.1093/geronb/gbx110.
Article
Google Scholar
Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R., & Wagenmakers, E.-J. (2017). Bayesian analysis of factorial designs. Psychological Methods, 22, 304–321. https://doi.org/10.1037/met0000057.
Article
PubMed
Google Scholar
Singh-Manoux, A., Richards, M., & Marmot, M. (2003). Leisure activities and cognitive function in middle age: evidence from the Whitehall II study. Journal of Epidemiology & Community Health, 57, 907–913. https://doi.org/10.1136/jech.57.11.907.
Article
Google Scholar
Sink, K. M., Espeland, M. A., Castro, C. M., Church, T., Cohen, R., Dodson, J. A., et al. (2015). Effect of a 24-month physical activity intervention vs health education on cognitive outcomes in sedentary older adults: the LIFE randomized trial. JAMA, 314(8), 781–790. https://doi.org/10.1001/jama.2015.9617.
Article
PubMed
PubMed Central
Google Scholar
Smart, C. M., Segalowitz, S. J., Mulligan, B. P., Koudys, J., & Gawryluk, J. R. (2016). Mindfulness training for older adults with subjective cognitive decline: results from a pilot randomized controlled trial. Journal of Alzheimer's Disease, 52, 757–774. https://doi.org/10.3233/JAD-150992.
Article
PubMed
Google Scholar
Stine-Morrow, E. A., Parisi, J. M., Morrow, D. G., & Park, D. C. (2008). The effects of an engaged lifestyle on cognitive vitality: a field experiment. Psychology and Aging, 23, 778–786. https://doi.org/10.1037/a0014341.
Article
PubMed
PubMed Central
Google Scholar
Strauss, E., MacDonald, S. W. S., Hunter, M., Moll, A., & Hultsch, D. F. (2002). Intraindividual variability in cognitive performance in three groups of older adults: cross-domain links to physical status and self-perceived affect and beliefs. Journal of the International Neuropsychological Society, 8, 893–906. https://doi.org/10.1017/S1355617702870035.
Article
PubMed
Google Scholar
Stuart, E. A., Perry, D. F., Le, H. N., & Ialongo, N. S. (2008). Estimating intervention effects of prevention programs: accounting for noncompliance. Prevention Science, 9, 288–298. https://doi.org/10.1007/s11121-008-0104-y.
Article
PubMed
PubMed Central
Google Scholar
Sullivan, K. L., Woods, S. P., Bucks, R. S., Loft, S., & Weinborn, M. (2018). Intraindividual variability in neurocognitive performance is associated with time-based prospective memory in older adults. Journal of Clinical and Experimental Neuropsychology, 40, 733–743. https://doi.org/10.1080/13803395.2018.1432571.
Article
PubMed
PubMed Central
Google Scholar
Tetlow, A. M., & Edwards, J. D. (2017). Systematic literature review and meta-analysis of commercially available computerized cognitive training among older adults. Journal of Cognitive Enhancement, 1, 559–575. https://doi.org/10.1007/s41465-017-0051-2.
Article
Google Scholar
Vasquez, B. P., & Anderson, N. D. (2018). Slow and steady: training induced improvements to response time consistency are due to overall slowing and minimized extremely slow responses. Psychology and Aging, 33, 1181–1194. https://doi.org/10.1037/pag0000319.
Article
PubMed
Google Scholar
Vasquez, B. P., Binns, M. A., & Anderson, N. D. (2018). Response time consistency is an indicator of executive control rather than global cognitive ability. Journal of the International Neuropsychological Society, 24, 456–465. https://doi.org/10.1017/S1355617717001266.
Article
PubMed
Google Scholar
Wagenmakers, E. J. (2007). A practical solution to the pervasive problems of p values. Psychonomic Bulletin & Review, 14, 779–804. https://doi.org/10.3758/BF03194105.
Article
Google Scholar
Wagenmakers, E. J., & Brown, S. (2007). On the linear relation between the mean and the standard deviation of a response time distribution. Psychological Review, 114, 830–841. https://doi.org/10.1037/0033-295X.114.3.830.
Article
PubMed
Google Scholar
West, R., Murphy, K. J., Armilio, M. L., Craik, F. I., & Stuss, D. T. (2002). Lapses of intention and performance variability reveal age-related increases in fluctuations of executive control. Brain and Cognition, 49, 402–419. https://doi.org/10.1006/brcg.2001.1507.
Article
PubMed
Google Scholar
Zanesco, A. P., King, B. G., MacLean, K. A., & Saron, C. D. (2018). Cognitive aging and long-term maintenance of attentional improvements following meditation training. Journal of Cognitive Enhancement, 2, 259–275. https://doi.org/10.1007/s41465-018-0068-1.
Article
Google Scholar
Zhou, Z., Wang, P., & Fang, Y. (2018). Social engagement and its change are associated with dementia risk among Chinese older adults: a longitudinal study. Scientific Reports, 8(1), 1551. https://doi.org/10.1038/s41598-017-17879-w.
Article
PubMed
PubMed Central
Google Scholar