Skip to main content
Log in

Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-wakefield electrons

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

In this study, we theoretically investigate the feasibility of using laser-wakefield accelerated (LWFA) electrons for the photonuclear measurement of nuclear isomers according to the characteristics of the electrons obtained from LWFA experiments conducted at the Compact Laser–Plasma Accelerator (CLAPA) laboratory. The experiments at the CLAPA show that a stable electron beam with an energy of 78–135 MeV and a charge of 300–600 pC can be obtained. The bremsstrahlung spectra were simulated using Geant4, which suggests that a bremsstrahlung source with a peak intensity of 10\(^{19}\) photons/s can be generated. Theoretical calculations of isomer production cross sections from the photonuclear reactions on six target nuclei, \(^{197}\)Au, \(^{180}\)Hf, \(^{159}\)Tb, \(^{115}\)In, \(^{103}\)Rh, and \(^{90}\)Zr, were performed and compared with the available experimental data in EXFOR, which suggest that further experiments are required for a series of photonuclear reaction channels. Flux-averaged cross sections and isomer ratios (IR) resulting from such bremsstrahlung sources are theoretically deduced. The results suggest that IR measurements can be used to constrain nuclear components, such as \(\gamma\) strength function and optical model potential. In addition, the detection of the decay characteristics was evaluated with Geant4 simulations. The use of the LWFA electron beam and its bremsstrahlung for photonuclear studies involving nuclear isomers is anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00186.00066 and https://cstr.cn/31253.11.sciencedb.j00186.00066.

References

  1. F. Soddy, The stability of lead isotopes from thorium. Nature 99, 244–245 (1917). https://doi.org/10.1038/099244c0

    Article  ADS  Google Scholar 

  2. O. Hahn, Über ein neues radioaktives zerfallsprodukt im uran. Naturwissenschaften 9, 84–84 (1921). https://doi.org/10.1007/BF01491321

    Article  ADS  Google Scholar 

  3. P. Walker, Z. Podolyák, 100 years of nuclear isomers-then and now. Phys. Scr. 95, 044004 (2020). https://doi.org/10.1088/1402-4896/ab635d

    Article  ADS  Google Scholar 

  4. A.K. Jain, B. Maheshwari, A. Goel, Nuclear Isomers: A Primer (Springer Nature, Berlin, 2021)

    Book  Google Scholar 

  5. C. Chiara, J. Carroll, M. Carpenter et al., Isomer depletion as experimental evidence of nuclear excitation by electron capture. Nature 554, 216–218 (2018). https://doi.org/10.1038/nature25483

    Article  ADS  Google Scholar 

  6. J. Gunst, Y.A. Litvinov, C.H. Keitel et al., Dominant secondary nuclear photoexcitation with the X-ray free-electron laser. Phys. Rev. Lett. 112, 082501 (2014). https://doi.org/10.1103/PhysRevLett.112.082501

    Article  ADS  Google Scholar 

  7. J. Thielking, M.V. Okhapkin, P. Głowacki et al., Laser spectroscopic characterization of the nuclear-clock isomer \(^{229m}\text{Th}\). Nature 556, 321–325 (2018). https://doi.org/10.1038/s41586-018-0011-8

    Article  ADS  Google Scholar 

  8. S. Guo, B. Ding, X.H. Zhou et al., Probing \(^{93m}\)Mo isomer depletion with an isomer beam. Phys. Rev. Lett. 128, 242502 (2022). https://doi.org/10.1103/PhysRevLett.128.242502

    Article  ADS  Google Scholar 

  9. Y. Wu, C.H. Keitel, A. Pálffy, \(^{93m}\)Mo isomer depletion via beam-based nuclear excitation by electron capture. Phys. Rev. Lett. 122, 212501 (2019). https://doi.org/10.1103/PhysRevLett.122.212501

    Article  ADS  Google Scholar 

  10. G. Lotay, A. Lennarz, C. Ruiz et al., Radiative capture on nuclear isomers: direct measurement of the \(^{26m}\)Al(p,\(\gamma\))\(^{27}\)Si reaction. Phys. Rev. Lett. 128, 042701 (2022). https://doi.org/10.1103/PhysRevLett.128.042701

    Article  ADS  Google Scholar 

  11. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267 (1979). https://doi.org/10.1103/PhysRevLett.43.267

    Article  ADS  Google Scholar 

  12. J. Faure, Y. Glinec, A. Pukhov et al., A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004). https://doi.org/10.1038/nature02963

    Article  ADS  Google Scholar 

  13. C. Geddes, C. Toth, J. Van Tilborg et al., High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431, 538–541 (2004). https://doi.org/10.1038/nature02900

    Article  ADS  Google Scholar 

  14. S.P. Mangles, C. Murphy, Z. Najmudin et al., Monoenergetic beams of relativistic electrons from intense laser-plasma interactions. Nature 431, 535–538 (2004). https://doi.org/10.1038/nature02939

    Article  ADS  Google Scholar 

  15. A. Modena, Z. Najmudin, A. Dangor et al., Electron acceleration from the breaking of relativistic plasma waves. Nature 377, 606–608 (1995). https://doi.org/10.1038/377606a0

    Article  ADS  Google Scholar 

  16. A. Pukhov, J. Meyer-ter Vehn, Laser wake field acceleration, the highly non-linear broken-wave regime. Appl. Phys. B 74, 355–361 (2002). https://doi.org/10.1007/s003400200795

    Article  ADS  Google Scholar 

  17. W. Lu, C. Huang, M. Zhou et al., Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006). https://doi.org/10.1103/PhysRevLett.96.165002

    Article  ADS  Google Scholar 

  18. V.G. Nedorezov, S.G. Rykovanov, A.B. Savel’ev, Nuclear photonics: results and prospects. PHYS-USP+ 64, 1214 (2021). https://doi.org/10.3367/UFNe.2021.03.038960

    Article  ADS  Google Scholar 

  19. J. Feng, W.Z. Wang, C.B. Fu et al., Femtosecond pumping of nuclear isomeric states by the coulomb collision of ions with quivering electrons. Phys. Rev. Lett. 128, 052501 (2022). https://doi.org/10.1103/PhysRevLett.128.052501

    Article  ADS  Google Scholar 

  20. W. Wang, J. Zhou, B.Q. Liu et al., Exciting the isomeric \(^{229}\)Th nuclear state via laser-driven electron Recollision. Phys. Rev. Lett. 127, 052501 (2021). https://doi.org/10.1103/PhysRevLett.127.052501

    Article  ADS  Google Scholar 

  21. Z.G. Ma, C.B. Fu, W.B. He et al., Manipulation of nuclear isomers with lasers: mechanisms and prospects. Sci. Bull. 67, 1526–1529 (2022). https://doi.org/10.1016/j.scib.2022.06.020

    Article  Google Scholar 

  22. W.T. Pan, T. Song, H.Y. Lan et al., Photo-excitation production of medically interesting isomers using intense \(\gamma\)-ray source. Appl. Radiat. Isot. 168, 109534 (2021). https://doi.org/10.1016/j.apradiso.2020.109534

    Article  Google Scholar 

  23. I. Spencer, K. Ledingham, R. Singhal et al., A nearly real-time high temperature laser-plasma diagnostic using photonuclear reactions in tantalum. Rev. Sci. Instrum. 73, 3801–3805 (2002). https://doi.org/10.1063/1.1511802

    Article  ADS  Google Scholar 

  24. X.L. Wang, Z.C. Xu, W. Luo et al., Transmutation prospect of long-lived nuclear waste induced by high-charge electron beam from laser plasma accelerator. Phys. Plasmas 24, 093105 (2017). https://doi.org/10.1063/1.4998470

    Article  ADS  Google Scholar 

  25. Z.G. Ma, H.Y. Lan, W.Y. Liu, Photonuclear production of medical isotopes \(^{62, 64}\)Cu using intense laser-plasma electron source. Matter Radiat. Extremes 4, 064401 (2019). https://doi.org/10.1063/1.5100925

    Article  Google Scholar 

  26. S. Agostinelli, J. Allison, K.A. Amako et al., GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  ADS  Google Scholar 

  27. A. Koning, D. Rochman, J.C. Sublet et al., TENDL: complete nuclear data library for innovative nuclear science and technology. Nucl. Data Sheets 155, 1–55 (2019). https://doi.org/10.1016/j.nds.2019.01.002

    Article  ADS  Google Scholar 

  28. E. Alhassan, D. Rochman, A. Vasiliev et al., Iterative Bayesian Monte Carlo for nuclear data evaluation. Nucl. Sci. Tech. 33, 50 (2022). https://doi.org/10.1007/s41365-022-01034-w

    Article  Google Scholar 

  29. N. Otuka, E. Dupont, V. Semkova et al., Towards a more complete and accurate experimental nuclear reaction data library (EXFOR): international collaboration between nuclear reaction data centres (NRDC). Nucl. Data Sheets 120, 272–276 (2014). https://doi.org/10.1016/j.nds.2014.07.065

    Article  ADS  Google Scholar 

  30. W. Luo, H.Y. Lan, Y. Xu et al., Implementation of the n-body Monte-Carlo event generator into the Geant4 toolkit for photonuclear studies. Nucl. Instrum. Methods Phys. Res. A 849, 49–54 (2017). https://doi.org/10.1016/j.nima.2017.01.010

    Article  ADS  Google Scholar 

  31. H.Y. Lan, Y. Xu, W. Luo et al., Determination of the photodisintegration reaction rates involving charged particles: systematic calculations and proposed measurements based on the facility for Extreme Light Infrastructure-Nuclear Physics. Phys. Rev. C 98, 054601 (2018). https://doi.org/10.1103/PhysRevC.98.054601

    Article  ADS  Google Scholar 

  32. H.Y. Lan, W. Luo, Y. Xu et al., Feasibility of studying astrophysically important charged-particle emission with the variable energy \(\gamma\)-ray system at the Extreme Light Infrastructure-Nuclear Physics facility. Phys. Rev. C 105, 044618 (2022). https://doi.org/10.1103/PhysRevC.105.044618

    Article  ADS  Google Scholar 

  33. K. Vogt, P. Mohr, M. Babilon et al., Measurement of the (\(\gamma\), n) cross section of the nucleus \(^{197}\)Au close above the reaction threshold. Nucl. Phys. A 707, 241–252 (2002). https://doi.org/10.1016/S0375-9474(02)00922-3

    Article  ADS  Google Scholar 

  34. C. Plaisir, F. Hannachi, F. Gobet et al., Measurement of the \(^{85}\)Rb(\(\gamma\), n)\(^{84m}\)Rb cross-section in the energy range 10–19 MeV with bremsstrahlung photons. Eur. Phys. J. A 48, 1–5 (2012). https://doi.org/10.1140/epja/i2012-12068-7

    Article  Google Scholar 

  35. A. Goryachev and G.I. Zalesnyi, Giant dipole resonance in Hf isotopes. Sov. J. Nucl. Phys.(Engl. Transl.) United States 26, 456 (1977)

  36. B.I. Goryachev, Y.V. Kuznetsov, V.N. Orlin et al. Giant resonance in the strongly deformed nuclei \(^{159}\)Tb, \(^{165}\)Ho, \(^{166}\)Er, and \(^{178}\)Hf. Sov. J. Nucl. Phys.(Engl. Transl.) United States 23, 609 (1976)

  37. O. Bogdankevich, B. Goryachev, V.A. Zapevalov, Splitting of the giant resonance in medium-heavy nuclei. Zhur. Eksptl’. i Teoret. Fiz. 42, 1502 (1962)

  38. R. Parsons, The photodisintegration of manganese and rhodium. Can. J. Phys. 37, 1344–1348 (1959). https://doi.org/10.1139/p59-154

    Article  ADS  Google Scholar 

  39. D. Brajnik, D. Jamnik, G. Kernel et al., Photonuclear reactions in \(^{90}\)Zr. Phys. Rev. C 13, 1852–1863 (1976). https://doi.org/10.1103/PhysRevC.13.1852

    Article  ADS  Google Scholar 

  40. K.Y. Hara, H. Harada, F. Kitatani et al., Measurements of the \(^{152}\)Sn (\(\gamma\), n) cross-section with laser-Compton scattering \(\gamma\) rays and the photon difference method. J. Nucl. Sci. Technol. 44, 938–945 (2007). https://doi.org/10.1080/18811248.2007.9711333

    Article  Google Scholar 

  41. O. Itoh, H. Utsunomiya, H. Akimune et al., Photoneutron cross sections for Au revisited: measurements with laser Compton scattering \(\gamma\)-rays and data reduction by a least-squares method. J. Nucl. Sci. Technol. 48, 834–840 (2011). https://doi.org/10.1080/18811248.2011.9711766

    Article  Google Scholar 

  42. F. Kitatani, H. Harada, S. Goko et al., Measurement of the \(^{80}\)Se (\(\gamma\), n) cross section using laser-Compton scattering \(\gamma\)-rays. J. Nucl. Sci. Technol. 47, 367–375 (2010). https://doi.org/10.1080/18811248.2010.9711967

    Article  Google Scholar 

  43. F. Kitatani, H. Harada, S. Goko et al., Measurement of \(^{76}\)Se and \(^{78}\)Se (\(\gamma\), n) cross sections. J. Nucl. Sci. Technol. 48, 1017–1024 (2011). https://doi.org/10.1080/18811248.2011.9711787

    Article  Google Scholar 

  44. A. Banu, E.G. Meekins, J.A. Silano et al., Photoneutron reaction cross section measurements on \(^{94}\)Mo and \(^{90}\)Zr relevant to the \(p\)-process nucleosynthesis. Phys. Rev. C 99, 025802 (2019). https://doi.org/10.1103/PhysRevC.99.025802

    Article  ADS  Google Scholar 

  45. B.L. Berman, R.E. Pywell, S.S. Dietrich et al., Absolute photoneutron cross sections for Zr, I, Pr, Au, and Pb. Phys. Rev. C 36, 1286–1292 (1987). https://doi.org/10.1103/PhysRevC.36.1286

    Article  ADS  Google Scholar 

  46. A. Veyssiere, H. Beil, R. Bergere et al., Photoneutron cross sections of \(^{208}\)Pb and \(^{197}\)Au. Nucl. Phys. A 159, 561–576 (1970). https://doi.org/10.1016/0375-9474(70)90727-X

    Article  ADS  Google Scholar 

  47. S.C. Fultz, R.L. Bramblett, J.T. Caldwell et al., Photoneutron cross-section measurements on gold using nearly monochromatic photons. Phys. Rev. 127, 1273–1279 (1962). https://doi.org/10.1103/PhysRev.127.1273

    Article  ADS  Google Scholar 

  48. R. Bergere, H. Beil, A. Veyssiere, Photoneutron cross sections of La, Tb, Ho and Ta. Nucl. Phys. A 121, 463–480 (1968). https://doi.org/10.1016/0375-9474(68)90433-8

    Article  ADS  Google Scholar 

  49. R.L. Bramblett, J.T. Caldwell, R.R. Harvey et al., Photoneutron cross sections of Tb\(^{159}\) and O\(^{16}\). Phys. Rev. 133, B869–B873 (1964). https://doi.org/10.1103/PhysRev.133.B869

    Article  ADS  Google Scholar 

  50. A. Lepretre, H. Beil, R. Bergere et al., A study of the giant dipole resonance of vibrational nuclei in the 103 \(\le\) A \(\le\) 133 mass region. Nucl. Phys. A 219, 39–60 (1974). https://doi.org/10.1016/0375-9474(74)90081-5

    Article  ADS  Google Scholar 

  51. S.C. Fultz, B.L. Berman, J.T. Caldwell et al., Photoneutron cross sections for Sn\(^{116}\), Sn\(^{117}\), Sn\(^{118}\), Sn\(^{119}\), Sn\(^{120}\), Sn\(^{124}\), and indium. Phys. Rev. 186, 1255–1270 (1969). https://doi.org/10.1103/PhysRev.186.1255

    Article  ADS  Google Scholar 

  52. A. Lepretre, H. Beil, R. Bergere et al., The giant dipole states in the A = 90 mass region. Nucl. Phys. A 175, 609–628 (1971). https://doi.org/10.1016/0375-9474(71)90454-4

    Article  ADS  Google Scholar 

  53. B.L. Berman, J.T. Caldwell, R.R. Harvey et al., Photoneutron cross sections for Zr\(^{90}\), Zr\(^{91}\), Zr\(^{92}\), Zr\(^{94}\), and Y\(^{89}\). Phys. Rev. 162, 1098–1111 (1967). https://doi.org/10.1103/PhysRev.162.1098

    Article  ADS  Google Scholar 

  54. V. Bokhinyuk, A. Guthy, A. Parlag et al., Study of the effective excitation cross section of the \(^{115}\)In isomeric state in the (gamma, gamma’) reaction. Ukrayins’ kij Fyizichnij Zhurnal (Kiev) 51, 657–660 (2006)

    Google Scholar 

  55. W. Tornow, M. Bhike, S.W. Finch et al., Measurement of the \(^{115}\)In (\(\gamma\), \(\gamma\)’) \(^{115m}\)In inelastic scattering cross section in the 1.8 to 3.7 MeV energy range with monoenergetic photon beams. Phys. Rev. C 98, 064305 (2018). https://doi.org/10.1103/PhysRevC.98.064305

    Article  ADS  Google Scholar 

  56. V.M. Mazur, I.V. Sokolyuk, Z.M. Bigan et al., Cross section for excitation of nuclear isomers in (\(\gamma\),\(\gamma\)’)(m) reactions at 4–15 MeV. Yadernaya Fizika 56, 20 (1993)

    Google Scholar 

  57. N.A. Demekhina, A.S. Danagulyan, G.S. Karapetyan, Formation of isomeric states in (\(\gamma\),\(\gamma\)’) reactions at energies around the Giant Dipole Resonance. Yadernaya Fizika 64, 1879 (2001). https://doi.org/10.1134/1.1414927

    Article  Google Scholar 

  58. O. Bogdankevich, L. Lazareva, F. Nikolaev, Inelastic scattering of photons by indium-115 nuclei. Soviet Phys. JETP 4, 320 (1957)

  59. N. Mutsuro, Y. Ohnuki, K. Sato et al., Photoneutron cross sections for Ag\(^{107}\), Mo\(^{92}\) and Zr\(^{90}\). J. Phys. Soc. Jpn. 14, 1649 (1959). https://doi.org/10.1143/JPSJ.14.1649

    Article  ADS  Google Scholar 

  60. D. Brajnik, D. Jamnik, G. Kernel et al., Photonuclear reactions in \(^{90}\)Zr. Phys. Rev. C 13, 1852 (1976). https://doi.org/10.1103/PhysRevC.13.1852

    Article  ADS  Google Scholar 

  61. H. Naik, G. Kim, K. Kim et al., Measurement of flux-weighted average cross sections for \(^{197}\)Au (\(\gamma\), xn) reactions and isomeric yield ratios of \(^{196m, g}\)Au with bremsstrahlung. Nucl. Phys. A 948, 28–45 (2016). https://doi.org/10.1016/j.nuclphysa.2016.01.015

    Article  ADS  Google Scholar 

  62. S. Rahman, K. Kim, G. Kim et al., Measurement of flux-weighted average cross-sections and isomeric yield ratios for \(^{103}\)Rh (\(gamma\), xn) reactions in the bremsstrahlung end-point energies of 55 and 60 MeV. Eur. Phys. J. A 52, 194 (2016). https://doi.org/10.1140/epja/i2016-16194-x

    Article  Google Scholar 

  63. I.N. Vishnevsky, V.A. Zheltonozhsky, I.N. Kadenko et al., Isomeric ratios of (\(\gamma\), p) and (\(\gamma\),\(\alpha\)) reactions on \(^{117m, g}\)In. Bull. Russ. Acad. Sci. Phys. 72, 1569 (2008). https://doi.org/10.3103/S1062873808110294

    Article  Google Scholar 

  64. S.R. Palvanov, O. Razhabov, Isomer yield ratios of photonuclear reactions at \(E_{\gamma }\)\(_{max}\) 25 and 30 MeV. At. Energ. 87, 75 (1999)

    Article  Google Scholar 

  65. M.S. Rahman, K.S. Kim, M. Lee et al., Measurement of isomeric-yield ratios for the \(^{197}\)Au(\(\gamma\), n)\(^{196m, g}\)Au reactions induced by bremsstrahlung. J. Radioanal. Nucl. Chem. 283, 519 (2010). https://doi.org/10.1007/s10967-009-0375-1

    Article  Google Scholar 

  66. T.D. Thiep, T.T. An, N.T. Vinh et al., Experimental study and theoretical consideration of the isomeric ratio in photonuclear reaction \(^{197}\)Au(\(\gamma\), n)\(^{196m, g}\)Au in the giant dipole resonance region. Phys. Part. Nucl. Lett. 3, 223 (2006). https://doi.org/10.1134/S1547477106040017

    Article  Google Scholar 

  67. W.J. Huang, G. Audi, M. Wang et al., The AME2016 atomic mass evaluation (I). Evaluation of input data and adjustment procedures. Chin. Phys. C 41, 030002 (2017). https://doi.org/10.1088/1674-1137/41/3/030002

    Article  ADS  Google Scholar 

  68. S. Goriely, N. Chamel, J.M. Pearson, Hartree–Fock–Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals. Phys. Rev. C 88, 061302 (2013). https://doi.org/10.1103/PhysRevC.88.061302

    Article  ADS  Google Scholar 

  69. R. Capote, M. Herman, P. Obložinskỳ et al., RIPL-reference input parameter library for calculation of nuclear reactions and nuclear data evaluations. Nucl. Data Sheets 110, 3107–3214 (2009). https://doi.org/10.1016/j.nds.2009.10.004

    Article  ADS  Google Scholar 

  70. K. Tanaka, K. Spohr, D. Balabanski et al., Current status and highlights of the ELI-NP research program. Matter Radiat. Extremes 5, 024402 (2020). https://doi.org/10.1063/1.5093535

    Article  Google Scholar 

  71. H.W. Wang, G.T. Fan, L.X. Liu et al., Commissioning of laser electron gamma beamline SLEGS at SSRF. Nucl. Sci. Tech. 33, 87 (2022). https://doi.org/10.1007/s41365-022-01076-0

    Article  Google Scholar 

  72. G.P. An, Y.L. Chi, Y.L. Dang et al., High energy and high brightness laser Compton backscattering gamma-ray source at IHEP. Matter Radiat. Extremes 3, 219–226 (2018). https://doi.org/10.1016/j.mre.2018.01.005

    Article  Google Scholar 

  73. D. Wu, J.Y. Zhang, H.Y. Lan et al., \(^{197}\)Au(\(\gamma\), xn; x = 1-7 ) reaction measurements using laser-driven ultra-bright ultra-fast bremsstrahlung \(\gamma\)-ray. arXiv:2209.13947 (2022)

  74. A. Gilbert, A.G.W. Cameron, A composite nuclear-level density formula with shell corrections. Can. J. Phys. 43, 1446 (1965). https://doi.org/10.1139/p65-139

    Article  ADS  Google Scholar 

  75. W. Dilg, W. Schantl, H. Vonach et al., Level density parameters for the back-shifted Fermi gas model in the mass range 40 \(<\) A \(<\) 250. Nucl. Phys. A 217, 269–298 (1973). https://doi.org/10.1016/0375-9474(73)90196-6

    Article  ADS  Google Scholar 

  76. A.V. Ignatyuk, J.L. Weil, S. Raman et al., Density of discrete levels in \(^{116}\)Sn. Phys. Rev. C 47, 1504–1513 (1993). https://doi.org/10.1103/PhysRevC.47.1504

    Article  ADS  Google Scholar 

  77. S. Goriely, F. Tondeur, J. Pearson, A Hartree–Fock nuclear mass table. At. Data Nucl. Data Tables 77, 311–381 (2001). https://doi.org/10.1006/adnd.2000.0857

    Article  ADS  Google Scholar 

  78. S. Goriely, S. Hilaire, A.J. Koning, Improved microscopic nuclear level densities within the Hartree–Fock–Bogoliubov plus combinatorial method. Phys. Rev. C 78, 064307 (2008). https://doi.org/10.1103/PhysRevC.78.064307

    Article  ADS  Google Scholar 

  79. S. Hilaire, M. Girod, S. Goriely et al., Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012). https://doi.org/10.1103/PhysRevC.86.064317

    Article  ADS  Google Scholar 

  80. A. Koning, J. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231–310 (2003). https://doi.org/10.1016/S0375-9474(02)01321-0

    Article  ADS  Google Scholar 

  81. J.P. Jeukenne, A. Lejeune, C. Mahaux, Many-body theory of nuclear matter. Phys. Rep. 25, 83–174 (1976). https://doi.org/10.1016/0370-1573(76)90017-X

    Article  ADS  Google Scholar 

  82. J.P. Jeukenne, A. Lejeune, C. Mahaux, Optical-model potential in finite nuclei from Reid’s hard core interaction. Phys. Rev. C 16, 80 (1977). https://doi.org/10.1103/PhysRevC.16.80

    Article  ADS  Google Scholar 

  83. E. Bauge, J. Delaroche, M. Girod, Semimicroscopic nucleon-nucleus spherical optical model for nuclei with A >\(\sim\) 40 at energies up to 200 MeV. Phys. Rev. C 58, 1118 (1998). https://doi.org/10.1103/PhysRevC.58.1118

    Article  ADS  Google Scholar 

  84. J. Kopecky, M. Uhl, Test of gamma-ray strength functions in nuclear reaction model calculations. Phys. Rev. C 41, 1941–1955 (1990). https://doi.org/10.1103/PhysRevC.41.1941

    Article  ADS  Google Scholar 

  85. D. Brink, Individual particle and collective aspects of the nuclear photoeffect. Nucl. Phys. 4, 215–220 (1957). https://doi.org/10.1016/0029-5582(87)90021-6

    Article  Google Scholar 

  86. P. Axel, Electric dipole ground-state transition width strength function and 7-MeV photon interactions. Phys. Rev. 126, 671–683 (1962). https://doi.org/10.1103/PhysRev.126.671

    Article  ADS  Google Scholar 

  87. S. Goriely, E. Khan, Large-scale QRPA calculation of E1-strength and its impact on the neutron capture cross section. Nucl. Phys. A 706, 217–232 (2002). https://doi.org/10.1016/S0375-9474(02)00860-6

    Article  ADS  Google Scholar 

  88. S. Goriely, E. Khan, M. Samyn, Microscopic HFB + QRPA predictions of dipole strength for astrophysics applications. Nucl. Phys. A 739, 331–352 (2004). https://doi.org/10.1016/j.nuclphysa.2004.04.105

    Article  ADS  Google Scholar 

  89. S. Goriely, Radiative neutron captures by neutron-rich nuclei and the r-process nucleosynthesis. Phys. Lett. B 436, 10–18 (1998). https://doi.org/10.1016/S0370-2693(98)00907-1

    Article  ADS  Google Scholar 

  90. S. Hilaire, M. Girod, S. Goriely et al., Temperature-dependent combinatorial level densities with the D1M Gogny force. Phys. Rev. C 86, 064317 (2012). https://doi.org/10.1103/PhysRevC.86.064317

    Article  ADS  Google Scholar 

  91. I. Daoutidis, S. Goriely, Large-scale continuum random-phase approximation predictions of dipole strength for astrophysical applications. Phys. Rev. C 86, 034328 (2012). https://doi.org/10.1103/PhysRevC.86.034328

    Article  ADS  Google Scholar 

  92. S. Goriely, S. Hilaire, S. Péru et al., Gogny-HFB+QRPA dipole strength function and its application to radiative nucleon capture cross section. Phys. Rev. C 98, 014327 (2018). https://doi.org/10.1103/PhysRevC.98.014327

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the 200 TW laser of CLAPA laboratory for the smooth operation of the machine.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hao-Yang Lan, Di Wu, Jia-Xin Liu, Jian-Yao Zhang, Huan-Gang Lu, Jian-Feng Lv, and Xue-Zhi Wu. The first draft of the manuscript was written by Hao-Yang Lan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Xue-Qing Yan.

Ethics declarations

Conflict of interest

Xue-Qing Yan is an editorial board member for Nuclear Science and Techniques and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 11921006, U2230133), Beijing Outstanding Young Scientists Program, National Grand Instrument Project (No. 2019YFF01014400), National Key R&D Program of China (No. 2022YFA1603303), and Open Foundation of Key Laboratory of High Power Laser and Physics, Chinese Academy of Sciences (No. SGKF202104).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, HY., Wu, D., Liu, JX. et al. Photonuclear production of nuclear isomers using bremsstrahlung induced by laser-wakefield electrons. NUCL SCI TECH 34, 74 (2023). https://doi.org/10.1007/s41365-023-01219-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01219-x

Keywords

Navigation