Skip to main content

Advertisement

Log in

High-precision high-voltage detuning system for HIAF-SRing electron target

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The development of a detuning system for the precision control of electron energy is a major challenge when electron targets are used in ion-storage rings. Thus, a high-precision, high-voltage, detuning system was developed for the electron target of a high-intensity heavy-ion accelerator facility-spectrometer ring (HIAF-SRing) to produce accurate electron–ion relative energies during experiments. The system consists of auxiliary, and high-voltage detuning power supplies. The front stage of the auxiliary power supply adopts an LCC resonant converter operating in the soft-switching state and an LC filter for a sinusoidal waveform output in the post-stage. The detuning power supply is a high-voltage pulse amplifier (HVPA) connected with a high-voltage DC (HVDC) module in series. In this paper, the design and development of the detuning system are described in detail, and the test bench is presented. The test results demonstrated that the detuning system conforms to the technical specifications of the dielectronic recombination (DR) experiment. Finally, a Fe15+ DR spectrum was measured using the detuning system. The experimental data demonstrated a good experimental resolution and verified the reliability and feasibility of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in Science Data Bank at https://www.doi.org/10.57760/sciencedb.07941 and https://cstr.cn/31253.11.sciencedb.07941.

References

  1. P. Beiersdorfer, N. Hell, J. Lepson, Temperature measurements using the dielectronic satellite lines of fe xvii. Astron. J. 864, 24 (2018). https://doi.org/10.3847/1538-4357/aad27f

    Article  Google Scholar 

  2. S. Preval, N. Badnell, M. O’Mullane, Partial and total dielectronic recombination rate coefficients for W73+ to W56+. Phys. Rev. A. 93, 042703 (2016). https://doi.org/10.1103/PhysRevA.93.042703

    Article  ADS  Google Scholar 

  3. E. Lindroth, H. Danared, P. Glans et al., QED effects in Cu-like Pb recombination resonances near threshold. Phys. Rev. Lett. 86, 5027 (2001). https://doi.org/10.1016/j.nimb.2008.10.040

    Article  ADS  Google Scholar 

  4. S. Schippers, Relativistic, QED and nuclear effects in highly charged ions revealed by resonant electron–ion recombination in storage rings. Nucl. Instrum. Meth. B. 267, 192–195 (2009). https://doi.org/10.1016/j.nimb.2008.10.040

    Article  ADS  Google Scholar 

  5. C. Brandau, C. Kozhuharov, Z. Harman et al., Isotope shift in the dielectronic recombination of three-electron Nd57+ A. Phys. Rev. Lett. 100, 073201 (2008). https://doi.org/10.1103/PhysRevLett.100.073201

    Article  ADS  Google Scholar 

  6. S. Schippers, E. Schmidt, D. Bernhardt et al., Photorecombination of berylliumlike Ti18+: hyperfine quenching of dielectronic resonances. J. Phys. Conf. Ser. 58, 025 (2007). https://doi.org/10.1088/1742-6596/58/1/025

    Article  Google Scholar 

  7. M. Lestinsky, E. Lindroth, D. Orlov et al., Screened radiative corrections from hyperfine-split dielectronic resonances in lithiumlike scandium. Phys. Rev. Lett. 100, 033001 (2008). https://doi.org/10.1103/PhysRevLett.100.033001

    Article  ADS  Google Scholar 

  8. S.J.N.I. Schippers, Electron–ion merged-beam experiments at heavy-ion storage rings. Nucl. Instrum. Meth. B. 350, 61–65 (2015). https://doi.org/10.1016/j.nimb.2014.12.050

    Article  ADS  Google Scholar 

  9. C. Brandau, C. Kozhuharov, M. Lestinsky et al., Storage-ring experiments on dielectronic recombination at the interface of atomic and nuclear physics. Phys. Scripta 2015, 014022 (2015). https://doi.org/10.1088/0031-8949/2015/T166/014022

    Article  Google Scholar 

  10. R. Schuch, S. Böhm, Atomic physics with ions stored in the round. J. Phys. Conf. Ser. 88, 012002 (2007). https://doi.org/10.1088/1742-6596/88/1/012002

    Article  Google Scholar 

  11. G.-F. Qu, W.-P. Chai, J.-W. Xia et al., Two-plane painting injection scheme for BRing of HIAF. Nucl. Sci. Tech. 28, 114 (2017). https://doi.org/10.1007/s41365-017-0260-5

    Article  Google Scholar 

  12. Z.K. Huang, W.Q. Wen, X. Xu et al., Dielectronic recombination experiments at the storage rings: from the present CSR to the future HIAF. Nucl. Instrum. Method B. 408, 135–139 (2017). https://doi.org/10.1016/j.nimb.2017.04.024

    Article  ADS  Google Scholar 

  13. T.M. Tang, L.J. Mao, H.J. Lu et al., Design of an efficient collector for the HIAF electron cooling system. Nucl. Sci. Tech. 32, 116 (2021). https://doi.org/10.1007/S41365-021-00949-0

    Article  Google Scholar 

  14. V. Belaguli, A.K.S. Bhat, Series-parallel resonant converter operating in discontinuous current mode. Analysis, design, simulation, and experimental results. IEEE Trans. Circuits Syst. I Fund. Theory Appl. 47(4), 433–442 (2000). https://doi.org/10.1109/81.841845

    Article  Google Scholar 

  15. R. Yang, H.F. Ding, Y. Xu et al., An analytical steady-state model of LCC type series–parallel resonant converter with capacitive output filter. IEEE. T. Power. Electr. 29, 328–338 (2013). https://doi.org/10.1109/TPEL.2013.2248753

    Article  Google Scholar 

  16. A.K.S. Bhat, S.B. Dewan, Analysis and design of a high-frequency resonant converter using LCC-type commutation. IEEE Trans. Power Electron. PE-2(4), 291–301 (1987). https://doi.org/10.1109/TPEL.1987.4307864

    Article  ADS  Google Scholar 

  17. K.M. Yan, X.M. Ma, J.B. Shangguan, et al., C.N. Patent 202110283776 (2021).

  18. H.G. Kang, D.Q. Chen, L. Zhang et al., Electronic Technology Fundamentals: Analog part, 6th ed. (China: HEP, 2013), pp. 348–360.

  19. H. Skolnik, Design considerations for linear optically coupled isolation amplifiers. IEEE. J. Solid-St Circ. 17, 1094–1101 (1982). https://doi.org/10.1109/JSSC.1982.1051866

    Article  ADS  Google Scholar 

  20. K.M. Yan, Y.B. Zhou, X.M. Ma et al., High-voltage detuning power system of HIRFL-CSRm electron cooler for dielectronic-recombination experiments. Nucl. Instrum. Meth. A. 1046, 167699 (2022). https://doi.org/10.1016/j.nima.2022.167699

    Article  Google Scholar 

  21. H.-M. Xie, K.-W. Gu, Y. Wei et al., A noninvasive Ionization Profile Monitor for transverse beam cooling and orbit oscillation study in HIRFL-CSR. Nucl. Sci. Tech. 31, 40 (2020). https://doi.org/10.1007/s41365-020-0743-7

    Article  Google Scholar 

  22. D. Bernhardt, C. Brandau, Z. Harman et al., Breit interaction in dielectronic recombination of hydrogenlike uranium. Phys. Rev. A. 83, 020701 (2011). https://doi.org/10.1103/PhysRevA.83.020701

    Article  ADS  Google Scholar 

  23. J. Linkemann, J. Kenntner, A. Müller et al., Electron impact ionization and dielectronic recombination of sodium-like iron ions. Nucl. Instrum. Meth. B. 98, 154–157 (1995). https://doi.org/10.1016/0168-583X(95)00095-X

    Article  ADS  Google Scholar 

  24. L.J. Mao, X.D. Yang, J.W. Xia et al., Electron beam longitudinal temperatures of electron cooler on CSR. Chin. Phys. C. 30, 54–56 (2006)

    Google Scholar 

  25. A. Aleksandrov, N. Dikansky, N.C. Kot et al., Relaxations in electron beams and adiabatic acceleration. Phys. Rev. A. 46, 6628 (1992). https://doi.org/10.1103/PhysRevA.46.6628

    Article  ADS  Google Scholar 

  26. N.S. Dikansky, V.I. Kudelainen, V.A. Lebedev et al., Ultimate Possibilities of Electron Cooling (Institute of Nuclear Physics, Novosibirsk, 1988), pp. 88–61.

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Kai-Ming Yan, Ming-Rui Li, Yun-Bin Zhou, Xiao-Ming Ma, Jin-Bin Shangguan, Zhong-Kui Huang, Xiao-Jun Wang, Mei-Tang Tang, Jie Gao, Hou-Ke Huang, Da-Qin Gao and Li-Jun Mao. The first draft of the manuscript was written by Kai-Ming Yan and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Li-Jun Mao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Appendix

Appendix

The components a, c, and e used in the imaginary transfer function calculation described in Eq. (1) were obtained using the following formula:

$$\begin{gathered} a = L_{1} L_{2} L_{3} C_{1} C_{2} C_{3} \hfill \\ c = L_{2} L_{3} C_{2} C_{3} + C_{1} C_{3} L_{1} L_{3} + C_{1} C_{2} \left( {L_{1} L_{3} + L_{2} L_{3} + L_{1} L_{2} } \right) \hfill \\ e = L_{2} C_{2} + L_{3} C_{3} + C_{2} L_{3} + L_{1} C_{1} + L_{3} C_{1} \hfill \\ \end{gathered}$$
(20)

The components φ1, φ2, and φ3 used in formula (11) can be obtained by the following:

$$\begin{gathered} \varphi_{1} = U_{i} \sin w_{0} T_\text{s} \hfill \\ \varphi_{2} = U_\text{i} (1 + \cos w_{0} T_\text{s} ) \hfill \\ \varphi_{3} = \frac{{\varphi_{2} + (C_{1} //C_{3} )\sqrt {L_{1} } \sin w_{0} T_\text{s} }}{{C_{3} \sqrt {C_{1} //C_{3} } }} + \frac{{\sqrt {L_{1} } i_\text{L} }}{{2C_{1} \sqrt {C_{1} //C_{3} } }} \hfill \\ \end{gathered}$$
(21)

The components \(A_{1} ,A_{2} ,B_{1} ,B_{2} ,C_{1} ,C_{2} ,D_{1} ,D_{2} ,E_{1}\), and \(E_{2}\) in the transfer function of the equivalent detuning power supply described in Eq. (17) are obtained by the following formula:

$$\begin{aligned} A_{1} = & R_{1} R_{2} R_{4} R_{5} C_{2} C_{B} L_{B} C_{i} \hfill \\ B_{1} = & (R_{1} R_{2} R_{4} + R_{2} R_{4} R_{5} - R_{1} R_{3} R_{5} )C_{B} L_{B} C_{i} \hfill \\ \, &+R_{1} R_{2} R_{4} R_{5} C_{2} C_{B} (R_{B} C_{i} + L_{B} R_{p} ) \hfill \\ C_{1} = & R_{1} R_{2} R_{4} R_{5} C_{2} (C_{B} R_{B} R_{p} + C_{i} ) + (C_{B} R_{B} C_{i} + C_{B} L_{B} R_{p} ) \hfill \\ \, & (R_{1} R_{2} R_{4} + R_{2} R_{4} R_{5} - R_{1} R_{3} R_{5} ) \hfill \\ D_{1} = & R_{1} R_{2} R_{4} R_{5} C_{2} R_{p} + (R_{1} R_{2} R_{4} + R_{2} R_{4} R_{5} - R_{1} R_{3} R_{5} ) \hfill \\ \, & (C_{B} R_{B} R_{p} + C_{i} ) \hfill \\ E_{1} = & (R_{1} R_{2} R_{4} + R_{2} R_{4} R_{5} - R_{1} R_{3} R_{5} )R_{p} \hfill \\ A_{2} = & R_{1} C_{2} C_{B} L_{B} C_{g} C_{L} R_{B} \hfill \\ B_{2} = & R_{1} C_{2} (C_{L} + C_{g} )C_{B} R_{B} + C_{B} L_{B} C_{g} C_{L} R_{B} \hfill \\ C_{2} = & (C_{L} + C_{g} )C_{B} L_{B} + R_{1} C_{2} R_{B} \left( {C_{g} C_{L} + (C_{L} + C_{g} )C_{B} } \right) \hfill \\ D_{2} = & R_{1} C_{2} (C_{L} + C_{g} ) + C_{g} C_{L} R_{B} + (C_{L} + C_{g} )C_{B} R_{B} \hfill \\ E_{2} = & C_{L} + C_{g} \hfill \\ \end{aligned}$$
(22)
$$kT_{||} = \frac{{(kT_\text{c} )^{2} }}{{2E_\text{kin} }} + C\frac{{e^{2} }}{{4\pi \varepsilon_{0} }}n_\text{e}^{\frac{1}{3}} + \frac{{E_\text{kin} }}{\gamma + 1}\left(\frac{\Delta U}{U}\right)^{2}$$
(23)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, KM., Li, MR., Zhou, YB. et al. High-precision high-voltage detuning system for HIAF-SRing electron target. NUCL SCI TECH 34, 75 (2023). https://doi.org/10.1007/s41365-023-01214-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-023-01214-2

Keywords

Navigation