Skip to main content
Log in

Properties of \(Z=\)114 super-heavy nuclei

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

The center of the stability island of super-heavy nuclei (SHN) is the subject of intense experimental and theoretical investigations and has potential technological applications. \(^{298}_{114}\)Fl lies in the \(Z=\)114 isotopic chain as a persuasive candidate of the spherical double-magic nucleus in SHN, and in this study, the calculations of nuclear binding energies, one-nucleon and two-nucleon separation energies, \(\alpha \)-decay energies, and the corresponding half-lives provide strong evidence for this point. These calculations within an improved Weizsäcker-Skyrme nuclear mass model (WS*) were performed and compared with the calculations of the finite-range droplet model (FRDM2012) and experimental data for \(Z=114\) isotopes and \(N=184\) isotones. Concurrently, the corresponding single-particle levels in a Woods-Saxon potential well with a spin-orbit term are calculated, which can be used as a powerful indicator to identify the shell effects existing in \(^{298}_{114}\)Fl. Both the study of the properties of the isotopic chain and microphysical quantities provide a vital signal that \(^{298}_{114}\)Fl is a spherical double-magic nucleus and also the center of the SHN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov et al., Measurements of cross sections for the fusion-evaporation reactions \(^{244} \text{Pu}(^{48} \text{Ca,xn}) ^{292-x}114\) and \(^{245} \text{Cm}(^{48} \text{Ca,xn})^{293-x}116\). Phys. Rev. C 69, 054607 (2004)

    Article  Google Scholar 

  2. Y.T. Oganessian, V.K. Utyonkov, S.N. Dmitriev et al., Synthesis of elements 115 and 113 in the reaction \(^{243}\)Am+\(^{48}\)Ca. Phys. Rev. C 72, 034611 (2005). https://doi.org/10.1103/PhysRevC.72.034611

    Article  Google Scholar 

  3. Y.T. Oganessian, V.K. Utyonkov, Y.V. Lobanov et al., Synthesis of the isotopes of elements 118 and 116 in the \(^{249}{\rm Cf} \) and \(^{245}{\rm Cm}+^{48}{\rm Ca} \) fusion reactions. Phys. Rev. C 74, 044602 (2006). https://doi.org/10.1103/PhysRevC.74.044602

    Article  Google Scholar 

  4. Ch.E. Düllmann, M. Schädel, A. Yakushev et al., Production and decay of element 114: high cross sections and the new nucleus \(^{277}{\rm Hs}\). Phys. Rev. Lett. 104, 252701 (2010). https://doi.org/10.1103/PhysRevLett.104.252701

    Article  Google Scholar 

  5. J.M. Gates, Ch.E. Düllmann, M. Schädel et al., First superheavy element experiments at the GSI recoil separator TASCA: the production and decay of element 114 in the \(^{244}{\rm Pu}\) (\(^{48}{\rm Ca}\),3–4\(n\)) reaction. Phys. Rev. C 83, 054618 (2011). https://doi.org/10.1103/PhysRevC.83.054618

    Article  Google Scholar 

  6. S. Hofmann, G. Münzenberg, The discovery of the heaviest elements. Rev. Mod. Phys. 72, 733 (2000). https://doi.org/10.1103/RevModPhys.72.733

    Article  Google Scholar 

  7. J. Dvorak, W. Brüchle, M. Chelnokov, R. Dressler et al., Doubly magic nucleus \(_{108}^{270}{\rm Hs}_{162}\). Phys. Rev. Lett. 97, 242501 (2006). https://doi.org/10.1103/PhysRevLett.97.242501

    Article  Google Scholar 

  8. Y.T. Oganessian, F.S. Abdullin, P.D. Bailey et al., Synthesis of a new element with atomic number \(Z=117\). Phys.Rev. Lett. 104, 142502 (2010). https://doi.org/10.1103/PhysRevLett.104.142502

    Article  Google Scholar 

  9. M. Schädel, Chemistry of the superheavy elements. Philos. Trans. R. Soc. London, Ser. A 373, 20140191 (2015). https://doi.org/10.1098/rsta.2014.0191

    Article  Google Scholar 

  10. P.A. Ellison, K.E. Gregorich, J.S. Berryman et al., New Superheavy Element Isotopes: \(^{242}{\rm Pu}(^{48}{\rm Ca},5n)^{285}114\). Phys. Rev. Lett. 105, 182701 (2010). https://doi.org/10.1103/PhysRevLett.105.182701

    Article  Google Scholar 

  11. Y.T. Oganessian, A.V. Yeremin, A.G. Popeko et al., Synthesis of nuclei of the superheavy element 114 in reactions induced by \(^{48}\)Ca. Nature 400, 242–245 (1999). https://doi.org/10.1038/22281

    Article  Google Scholar 

  12. P. Möller, J.R. Nix, W.D. Myers et al., Nuclear ground-state masses and deformations. At. Data Nucl. Data Tables 59, 185–381 (1995). https://doi.org/10.1006/adnd.1995.1002

    Article  Google Scholar 

  13. Y. Aboussir, J.M. Pearson, A.K. Dutta et al., Nuclear mass formula via an approximation to the Hartree-Fock method. At. Data Nucl. Data Tables 61, 127 (1995). https://doi.org/10.1016/S0092-640X(95)90014-4

    Article  Google Scholar 

  14. S. Goriely, N. Chamel, J.M. Pearson, Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals. Phys. Rev. C 88, 061302 (2013). https://doi.org/10.1103/PhysRevC.88.061302

    Article  Google Scholar 

  15. N. Wang, M. Liu, X.Z. Wu, Modification of nuclear mass formula by considering isospin effects. Phys. Rev. C 81, 044322 (2010). https://doi.org/10.1103/PhysRevC.81.044322

    Article  Google Scholar 

  16. A. Sobiczewski, F.A. Gareev, B.N. Kalinkin, Closed shells for Z>82 and N> 126 in a diffuse potential well. Phys. Lett. 22, 500 (1966). https://doi.org/10.1016/0031-9163(66)91243-1

    Article  Google Scholar 

  17. W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)

    Article  Google Scholar 

  18. S.G. Nilsson, C.F. Tsang, A. Sobiczewski et al., On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1 (1969). https://doi.org/10.1016/0375-9474(69)90809-4

    Article  Google Scholar 

  19. Y.K. Gambhir, A. Bhagwat, M. Gupta, \(\alpha \)-decay half-lives of the observed superheavy nuclei \((Z=108-118)\). Phys. Rev. C 71, 037301 (2005). https://doi.org/10.1103/PhysRevC.71.037301

    Article  Google Scholar 

  20. M. Bender, \(\alpha \)-decay chains of \({}_{175}^{289}114\) and \({}_{175}^{293}118\) in the relativistic mean-field model. Phys. Rev. C 61, 031302 (2000). https://doi.org/10.1103/PhysRevC.61.031302

    Article  Google Scholar 

  21. S.K. Patra, C.L. Wu, C.R. Praharaj et al., A systematic study of superheavy nuclei for \(Z = 114\) and beyond using the relativistic mean field approach. Nucl. Phys. A 651, 117 (1999). https://doi.org/10.1016/S0375-9474(99)00129-3

    Article  Google Scholar 

  22. S. Goriely, M. Samyn, J.M. Pearson et al., Hartree-Fock mass formulas and extrapolation to new mass data. Phys. Rev. C 66, 024326 (2002). https://doi.org/10.1103/PhysRevC.66.024326

    Article  Google Scholar 

  23. S. Typel, B.A. Brown, Skyrme Hartree-Fock calculations for the \(\alpha \)-decay Q values of superheavy nuclei. Phys. Rev. C 67, 034303 (2003). https://doi.org/10.1103/PhysRevC.67.034313

    Article  Google Scholar 

  24. N. Wang, Z.Y. Liang, M. Liu et al., Mirror nuclei constraint in nuclear mass formula. Phys. Rev. C 82, 044304 (2010). https://doi.org/10.1103/PhysRevC.82.044304

    Article  Google Scholar 

  25. G. Audi, A.H. Wapstra, C. Thibault, The Ame2003 atomic mass evaluation: (II). Tables, graphs and references. Nucl. Phys. A 729, 337 (2003). https://doi.org/10.1016/j.nuclphysa.2003.11.003

    Article  Google Scholar 

  26. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175 (1957). https://doi.org/10.1103/PhysRev.108.1175

    Article  MathSciNet  MATH  Google Scholar 

  27. H.F. Zhang, L.H. Wang, J.P. Yin et al., Performance of the Levenberg-Marquardt neural network approach in nuclear mass prediction. J. Phys. G Nucl. Part. Phys. 44, 045110 (2017). https://doi.org/10.1088/1361-6471/aa5d78

    Article  Google Scholar 

  28. N.N. Ma, H.F. Zhang, X.J. Bao et al., Weizsäcker-Skyrme-type mass formula by considering radial basis function correction. J. Phys. G Nucl. Part. Phys. 42, 095107 (2015). https://doi.org/10.1088/0954-3899/42/9/095107

    Article  Google Scholar 

  29. S. Cwiok, J. Dudek, W. Nazarewicz et al., Single-particle energies, wave functions, quadrupole moments and g-factors in an axially deformed woods-saxon potential with applications to the two-centre-type nuclear problems. Comput. Phys. Commun. 46, 379 (1987). https://doi.org/10.1016/0010-4655(87)90093-2

    Article  Google Scholar 

  30. J. Damgaard, H.C. Pauli, V.V. Pashkevich et al., A method for solving the independent-particle Schrödinger equation with a deformed average field. Nucl. Phys. A 135, 432 (1969). https://doi.org/10.1016/0375-9474(69)90174-2

    Article  Google Scholar 

  31. P. Salamon, A.T. Kruppa, Curvature correction in Strutinsky’s method. J. Phys. G Nucl. Part. Phys. 37, 105106 (2010). https://doi.org/10.1088/0954-3899/37/10/105106

    Article  Google Scholar 

  32. V.M. Strutinsky, F.A. Ivanjuk, A new definition of shell corrections to the liquid drop energy. Nucl. Phys. A 255, 405 (1975). https://doi.org/10.1016/0375-9474(75)90688-0

    Article  Google Scholar 

  33. M. Brack, H.C. Pauli, On Strutinsky’s averaging method. Nucl. Phys. A 207, 401 (1973). https://doi.org/10.1016/0375-9474(73)90355-2

    Article  Google Scholar 

  34. J.J. Li, W.H. Long, J. Margueron et al., Superheavy magic structures in the relativistic Hartree-Fock-Bogoliubov approach. Phys. Lett. B 732, 169 (2014). https://doi.org/10.1016/j.physletb.2014.03.031

    Article  Google Scholar 

  35. J.J. Li, J. Margueron, W.H. Long et al., Magicity of neutron-rich nuclei within relativistic self-consistent approaches. Phys. Lett. B 753, 97 (2016). https://doi.org/10.1016/j.physletb.2015.12.004

    Article  Google Scholar 

  36. M. Wang, W.J. Huang, F.G. Kondev et al., The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 45, 030003 (2021). https://doi.org/10.1088/1674-1137/abddaf

    Article  Google Scholar 

  37. P. Möller, A.J. Sierk, T. Ichikawa et al., Nuclear ground-state masses and deformations: FRDM(2012). At. Data Nucl. Data Tables 109–110, 1 (2016). https://doi.org/10.1016/j.adt.2015.10.002

    Article  Google Scholar 

  38. A.E.S. Green, Nuclear Physics (McGraw-Hill Book Company, Inc, New York, 1955), p. 250

    MATH  Google Scholar 

  39. Y.A. Lazarev, Y.V. Lobanov, Y.T. Oganessian et al., Discovery of enhanced nuclear stability near the deformed shells \(N=162\) and \(Z=108\). Phys. Rev. Lett. 73, 624 (1994). https://doi.org/10.1103/PhysRevLett.73.624

    Article  Google Scholar 

  40. J. Dvorak, W. Brüchle, M. Chelnokov et al., Doubly magic nucleus \(_{108}^{270}\rm Hs_{162}\). Phys. Rev. Lett. 97, 242501 (2006). https://doi.org/10.1103/PhysRevLett.97.242501

    Article  Google Scholar 

  41. Y.T. Oganessian, V.K. Utyonkov, F.S. Abdullin et al., Synthesis and study of decay properties of the doubly magic nucleus \({}^{270}\)Hs in the \({}^{226}\)Ra + \({}^{48}\)Ca reaction. Phys. Rev. C 87, 034605 (2013). https://doi.org/10.1103/PhysRevC.87.034605

    Article  Google Scholar 

  42. H.F. Zhang, G. Royer, \(\alpha \) particle preformation in heavy nuclei and penetration probability. Phys. Rev. C 77, 054318 (2008). https://doi.org/10.1103/PhysRevC.77.054318

    Article  Google Scholar 

  43. G. Royer, Alpha emission and spontaneous fission through quasi-molecular shapes. J. Phys. G Nucl. Part. Phys. 26, 1149 (2000). https://doi.org/10.1088/0954-3899/26/8/305

    Article  Google Scholar 

  44. G. Royer, Analytic expressions for alpha-decay half-lives and potential barriers. Nucl. Phys. A 848, 279 (2010). https://doi.org/10.1016/j.nuclphysa.2010.09.009

    Article  Google Scholar 

  45. J.G. Deng, H.F. Zhang, G. Royer, Improved empirical formula for \(\alpha \)-decay half-lives. Phys. Rev. C 101, 034307 (2020). https://doi.org/10.1103/PhysRevC.101.034307

    Article  Google Scholar 

  46. H.C. Manjunatha, L. Seenappa, K.N. Sridhar, Uncertainties in the empirical formulae for alpha decay half-lives of heavy and superheavy nuclei. Eur. Phys. J. Plus 134, 477 (2019). https://doi.org/10.1140/epjp/i2019-12838-0

    Article  Google Scholar 

  47. Look Up Calculated Odd-Nucleon Spins and Parities at the Nuclear Ground State. https://t2.lanl.gov/nis/data/astro/molnix96/spidat.html

  48. Q.H. Mo, M. Liu, N. Wang, Systematic study of shell gaps in nuclei. Phys. Rev. C 90, 024320 (2014). https://doi.org/10.1103/PhysRevC.90.024320

    Article  Google Scholar 

  49. V.K. Utyonkov, N.T. Brewer, Y.T. Oganessian et al., Experiments on the synthesis of superheavy nuclei \(^{284}{\rm Fl}\) and \(^{285}{\rm Fl} \) in the \(^{239,240}{\rm Pu}+^{48}{\rm Ca}\) reactions. Phys. Rev. C 92, 034609 (2015). https://doi.org/10.1103/PhysRevC.92.034609

    Article  Google Scholar 

  50. A. Yakushev, J.M. Gates, A. Turler et al., Superheavy element flerovium (Element 114) is a volatile metal. Inorg. Chem. 53, 1624 (2014). https://doi.org/10.1021/ic4026766

    Article  Google Scholar 

  51. Y. Aritomo, Possibility of synthesizing a doubly magic superheavy nucleus. Phys. Rev. C 75, 024602 (2007). https://doi.org/10.1103/PhysRevC.75.024602

    Article  Google Scholar 

  52. H.C. Manjunatha, K.N. Sridhar, N. Sowmya, Investigations of the synthesis of the superheavy element \(Z=122\). Phys. Rev. C 98, 024308 (2018). https://doi.org/10.1103/PhysRevC.98.024308

    Article  Google Scholar 

  53. H.C. Manjunatha, N. Sowmya, Decay modes of superheavy nuclei \(Z = 124\). Int. J. Mod Phys E 27, 1850041 (2018). https://doi.org/10.1142/S0218301318500416

    Article  Google Scholar 

  54. N. Sowmya, H.C. Manjunatha, Competition between different decay modes of superheavy element \(Z = 116\) and synthesis of possible isotopes. Braz. J. Phys. 49, 874–886 (2019). https://doi.org/10.1007/s13538-019-00710-4

    Article  Google Scholar 

  55. N. Sowmya, H.C. Manjunatha, Investigations on different decay modes of darmstadtium. Phys. Part. Nucl. Lett. 17, 370–378 (2020). https://doi.org/10.1134/S1547477120030140

    Article  Google Scholar 

  56. H.C. Manjunatha, K.N. Sridhar, A detail investigation on the synthesis of superheavy element \(Z = 119\). Phys. Part. Nucl. Lett. 16, 647–655 (2019). https://doi.org/10.1134/S1547477119060487

    Article  Google Scholar 

  57. K.N. Sridhar, H.C. Manjunatha, H.B. Ramalingam, Search for possible fusion reactions to synthesize the superheavy element \(Z=121\). Phys. Rev. C 98, 064605 (2018). https://doi.org/10.1103/PhysRevC.98.064605

    Article  Google Scholar 

  58. N. Sowmya, H.C. Manjunatha, P.S. Damodara Gupta et al., Competition between cluster and alpha decay in odd Z superheavy nuclei 111 \(\le \) Z \(\le \) 125. Braz. J. Phys. 51, 99–135 (2021). https://doi.org/10.1007/s13538-020-00801-7

    Article  Google Scholar 

  59. H.C. Manjunatha, Comparison of alpha decay with fission for isotopes of superheavy nuclei \(Z = 124\). Int. J. Mod Phys E 25, 1650074 (2016). https://doi.org/10.1142/S0218301316500749

    Article  Google Scholar 

  60. N. Sowmya, H.C. Manjunatha, N. Dhananjaya et al., Competition between binary fission, ternary fission, cluster radioactivity and alpha decay of \(^{281}\)Ds. J. Radioanal. Nucl. Chem. 323, 1347 (2020). https://doi.org/10.1007/s10967-019-06706-3

    Article  Google Scholar 

  61. H.C. Manjunatha, Theoretical prediction of probable isotopes of superheavy nuclei of \(Z = 122\). Int. J. Mod. Phys. E 25, 1650100 (2016). https://doi.org/10.1142/S0218301316501007

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Fei Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 10775061, 11175054, 11675066, 11665019, and 11947229), the China Postdoctoral Science Foundation (No. 2019M663853), the Fundamental Research Funds for the Central Universities (Nos. lzujbky-2017-ot04 and lzujbky-2020-it01), and Feitian Scholar Project of Gansu Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, YQ., Ma, NN., Deng, JG. et al. Properties of \(Z=\)114 super-heavy nuclei. NUCL SCI TECH 32, 55 (2021). https://doi.org/10.1007/s41365-021-00899-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00899-7

Keywords

Navigation