Skip to main content
Log in

Beam performance of the SHINE dechirper

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A corrugated structure is built and tested on many FEL facilities, providing a ‘dechirper’ mechanism for eliminating energy spread upstream of the undulator section of X-ray FELs. The wakefield effects are here studied for the beam dechirper at the Shanghai high repetition rate XFEL and extreme light facility (SHINE), and compared with analytical calculations. When properly optimized, the energy spread is well compensated. The transverse wakefield effects are also studied, including the dipole and quadrupole effects. By using two orthogonal dechirpers, we confirm the feasibility of restraining the emittance growth caused by the quadrupole wakefield. A more efficient method is thus proposed involving another pair of orthogonal dechirpers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K.L.F. Bane, G. Stupakov, Corrugated pipe as a beam dechirper. Nucl. Instrum. Methods A 690, 106–110 (2012). https://doi.org/10.2172/1038704

    Article  Google Scholar 

  2. M. Harrison, G. Andonian, T. Campese et al., Removal of residual chirp in compressed beams using a passive wakefield technique, in Proc. North American Particle Accelerator Conf. (2013), pp. 291–293. https://accelconf.web.cern.ch/pac2013/papers/mopho25.pdf

  3. P. Emma, M. Venturini, K. Bane et al., Experimental demonstration of energy-chirp control in relativistic electron bunches using a corrugated pipe. Phys. Rev. Lett. 112, 034801 (2014). https://doi.org/10.1103/PhysRevLett.112.034801

    Article  Google Scholar 

  4. F.C. Fu, R. Wang, P.F. Zhu, Demonstration of nonlinear-energy-spread compensation in relativistic electron bunches with corrugated structures. Phys. Rev. Lett. 114, 114801 (2015). https://doi.org/10.1103/PhysRevLett.114.114801

    Article  Google Scholar 

  5. F.C. Fu, R. Wang, P.F. Zhu et al., Time-resolved measurement of quadrupole wakefields in corrugated structures. Phys. Rev. Accel. Beams 19, 020706 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.020706

    Article  Google Scholar 

  6. M. W. Guetg, K. Bane, A. Brachmann et al., Commissioning of the RadiaBeam, in IPAC-2016-Conference (2016). https://doi.org/10.18429/JACoW-IPAC2016-MOPOW044

  7. S. Bettoni, P. Craievich, R. Ganter et al., Beam manipulation using self-induced fields in the SwissFEL injector, in 9th International Particle Accelerator Conference, IPAC2018, Vancouver, BC, Canada, May 3, (2018). https://doi.org/10.18429/JACoW-IPAC2018-THPAK074

  8. Z. Wang, C. Feng, D. Huang et al., Nonlinear energy chirp compensation with corrugated structures. Nucl. Sci. Tech. 29, 175 (2018). https://doi.org/10.1007/s41365-018-0512-z

    Article  Google Scholar 

  9. Q. Gu, M. H. Zhao, M, Zhang, A passive linearizer for bunch compression, in Linac, Proceedings of LINAC2012, Tel-aviv, Israel (2012). https://accelconf.web.cern.ch/LINAC2012/papers/tupb022.pdf

  10. H.X. Deng, M. Zhang, C. Feng et al., Experimental demonstration of longitudinal beam phase-space linearizer in a free-electron laser facility by corrugated structures. Phys. Rev. Lett. 113, 254802 (2014). https://doi.org/10.1103/PhysRevLett.113.254802

    Article  Google Scholar 

  11. S. Jimin, C. Moses, S.K. Heung et al., Use of a corrugated beam pipe as a passive deflector for bunch length measurements. Phys. Rev. Accel. Beams 21, 022801 (2018). https://doi.org/10.1103/PhysRevAccelBeams.21.022801

    Article  Google Scholar 

  12. S. Bettoni, E. Prat, S. Reiche, Two-color beam generation based on wakefield excitation. Phys. Rev. Accel. Beams 19, 050702 (2016). https://doi.org/10.1088/0954-3899/40/12/125106

    Article  Google Scholar 

  13. A. Lutman, T. Maxwell, J. MacArthur et al., Fresh-slice multicolour X-ray free-electron lasers. Nat. Photon 10, 745–750 (2016). https://doi.org/10.1038/nphoton.2016.201

    Article  Google Scholar 

  14. K. Bane, M. Fedurin, A. Sergey, Measurements of terahertz generation in a metallic, corrugated beam pipe, in AIP Conference Proceedings (2016). https://doi.org/10.1063/1.4965647

  15. Y.X. Zhang, J.F. Chen, D. Wang, RF design optimization for the SHINE 3.9 GHz cavity. Nucl. Sci. Tech. 31, 73 (2020). https://doi.org/10.1007/s41365-020-00772-z

    Article  Google Scholar 

  16. G. Stupakov, K.L.F. Bane, Surface impedance formalism for a metallic beam pipe with small corrugations. Phys. Rev. ST Accel. Beams 15, 124401 (2012). https://doi.org/10.1103/PhysRevSTAB.15.124401

    Article  Google Scholar 

  17. K.L.F. Bane, G. Stupakov, Impedance of a rectangular beam tube with small corrugations. Phys. Rev. ST Accel. Beams 6, 024401 (2013). https://doi.org/10.1103/PhysRevSTAB.6.024401

    Article  Google Scholar 

  18. K.L.F. Bane, G. Stupakov, Using surface impedance for calculating wakefields in flat geometry. Phys. Rev. ST Accel. Beams 18, 034401 (2015). https://doi.org/10.1103/10.1103/PhysRevSTAB.18.034401

    Article  Google Scholar 

  19. K. Bane, G. Stupakov, I. Zagorodnov, Analytical formulas for short bunch wakes in a flat dechirper. Phys. Rev. Accel. Beams 19, 084401 (2016). https://doi.org/10.1103/PhysRevAccelBeams.19.084401

    Article  Google Scholar 

  20. R. Gluckstern, Longitudinal impedance of a periodic structure at high frequency. Phys. Rev. D 39, 2780 (1989). https://doi.org/10.1103/PhysRevD.39.2780

    Article  Google Scholar 

  21. G. Stupakov, Coupling impedance of a periodic array of diaphrams. Proc. Part. Accel. Conf. 5, 3303–3305 (1995). https://doi.org/10.1109/PAC.1995.505862

    Article  Google Scholar 

  22. I. Zagorodnov, K.L.F. Bane, G. Stupakov, Calculation of wakefields in 2D rectangular structures. Phys. Rev. ST Accel. Beams 18, 104401 (2015). https://doi.org/10.1103/PhysRevSTAB.18.104401

    Article  Google Scholar 

  23. I.S. Ko, W. Chou, Beam dynamics newsletter, in International Committee for Future Accelerators (2005). https://www-bd.fnal.gov/icfabd/Newsletter38.pdf

  24. A.W. Chao, M.K.H. Mess, M. Tigner et al., Handbook of Accelerator Physics and Engineering, vol. P73 (2013). https://doi.org/10.1142/8543

  25. K. Bane, G. Stupakov, Dechirper Wakefields for short bunches. Nucl. Instrum. Meth. A 820, 156–163 (2016). https://doi.org/10.1016/j.nima.2016.02.055

    Article  Google Scholar 

  26. Z. Zhang, B. Karl, Y.T. Ding et al., Electron beam energy chirp control with a rectangular corrugated structure at the Linac Coherent Light Source. Phys. Rev. ST Accel. Beams 18, 010702 (2015). https://doi.org/10.1103/PhysRevSTAB.18.010702

    Article  Google Scholar 

  27. M. Borland, ELEGANT: A flexible SDDS-compliant code for accelerator simulation, in Adv Phot Source LS-287, United States (2000). https://doi.org/10.2172/761286

  28. K.L.F. Bane, G. Stupakov, What limits the gap in a flat dechirper for an X-ray FEL, in SLAC-PUB15852, United States (2013). https://doi.org/10.2172/1110631

  29. M. H. Blewett, A. Zichichi, K. Johnsen, Theoretical aspects of the behavior of beams in accelerators and storage rings (1977), p. 34. https://doi.org/10.5170/CERN-1977-013

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by You-Wei Gong, Meng Zhang and Duan Gu. The first draft of the manuscript was written by You-Wei Gong and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Duan Gu.

Additional information

This work was supported by the Youth Innovation Promotion Association CAS (Nos. 2018300 and 2021282), the National Key Research and Development Program of China (No. 2018YFE0103100), and the National Natural Science Foundation of China (No. 11935020).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, YW., Zhang, M., Fan, WJ. et al. Beam performance of the SHINE dechirper. NUCL SCI TECH 32, 29 (2021). https://doi.org/10.1007/s41365-021-00860-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-021-00860-8

Keywords

Navigation