Skip to main content
Log in

Effects of beam radius and wobbling frequency on the uniformity of target implosion in direct-drive heavy ion fusion approach

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the field of inertial confinement fusion, non-uniform illumination of beams is a significant factor contributing to the non-uniform implosion of the target. Researchers have shown interest in direct-drive heavy ion beams due to their high efficiency in accelerating particles. To ensure the consistent operation of fusion reactors, it is essential to achieve robustness in target implosion. As a proposed solution, this paper investigates the impact of beam radius variation and wobbling frequency on target gain in heavy ion beam illumination. The study specifically examines the effects of beam radius variation and wobbling frequency on target gain. In one case, the wobbling frequency is set at 438 MHz, and the pulse radius is increased from 3.8 to 4.2 mm. The investigation involves analyzing the evolution of RMS nonuniformity in target layers. The results indicate that although increasing the beam radius leads to a slight rise in energy deposition non-uniformity, it still results in an overall increase in target gain of approximately 13%. Additionally, calculations are conducted for a wobbling frequency of 453 MHz. The findings demonstrate that increasing the beam radius from 3.8 to 4 mm, similar to the previous case, increases the target gain by approximately 7%. However, further increasing the radius to 4.2 mm causes a decrease in target gain due to the misalignment of a fraction of the heavy ion beam particles with the target. These results suggest that adjusting the beam radius and wobbling frequency can have a notable impact on target gain in heavy ion beam illumination. By carefully selecting these parameters, it is possible to enhance target implosion uniformity and improve fusion performance. The findings presented in this paper contribute to the understanding of beam-target interactions in inertial confinement fusion and offer insights for optimizing heavy ion beam illumination techniques in future fusion experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K Tokimatsu, J Fujino, S Konishi, Y Ogawa and K Yamaji Energy Policy 31 775 (2003)

    Article  Google Scholar 

  2. L S Artsimovich Sov. Phys. Usp. 1 191 (1958)

    Article  ADS  Google Scholar 

  3. S Pfalzner An Introduction to Inertial Confinement Fusion (Florida: CRC Press) (2006)

    Book  Google Scholar 

  4. M D Rosen Phys. Plasmas 6 1690 (1999)

    Article  ADS  Google Scholar 

  5. T A Mehlhorn IEEE Trans. Plasma Sci. 27 1336 (1997)

    Article  ADS  Google Scholar 

  6. E P Lee and J Hovingh Fusion Technol. 15 369 (2017)

    Article  ADS  Google Scholar 

  7. E I Moses et al Eur. Phys. Journ. D 44 215 (2007)

    Article  ADS  Google Scholar 

  8. B Y Sharkov et al Matter. Radiat. Extremes 1 28 (2016)

    Article  Google Scholar 

  9. K Horioka Matter. Radiat. Extremes 3 12 (2018)

    Article  Google Scholar 

  10. I Hofmann Matter Radiat. Extremes 3 1 (2018)

    Article  Google Scholar 

  11. B Sharkov and D Varentsov Nucl. Instrum. Methods A733 238 (2014)

    Article  ADS  Google Scholar 

  12. J C Yang et al Nucl. Instrum. Methods B317 263 (2013)

    Article  ADS  Google Scholar 

  13. I Hofmann et al Part. Accel 13 145 (1983)

    Google Scholar 

  14. M G Tiefenbach and D Keefe IEEE Trans. Nucl. Sci. 32 2483 (1985)

    Article  ADS  Google Scholar 

  15. D H Hoffmann et al Zeitschr. f. Physik A Hadrons Nucl. 330 339 (1988)

    ADS  Google Scholar 

  16. L Teng Proceedings of the 4th International Symposium on Accelerator Aspects of Heavy Ion Fusion, March 29eApril 2, 1982. Darmstadt, Germany, Report GSI-82e88, p 356 (1982)

  17. I Hofmann and I Boszik Proceedings of the 4th International Symposium on Accelerator Aspects of Heavy Ion Fusion, March 29eApril 2, 1982. Darmstadt, Germany, Report GSI-82e88, P 181ff and P 362ff (1982)

  18. R M Bock et al Inertial Confinement Fusion: Heavy Ions, in: Landolt Boernstein, New Series VIII/3, 10, (2004)

  19. R C Arnold, E Colton, S Fenster, M Foss, G Magelssen and A Moretti Nucl. Instrum. Methods 199 557 (1982)

    Article  Google Scholar 

  20. A R Piriz, N A Tahir, D H Hoffmann and M Temporal Phys. Rev. E 67 017501 (2003)

    Article  ADS  Google Scholar 

  21. H Qin, R C Davidson and B G Logan Phys. Rev. Lett. 104 254801 (2010)

    Article  ADS  Google Scholar 

  22. S Kawata, T Karino and A I Ogoyski Matter. Radiat. Extremes 1 89 (2016)

    Article  Google Scholar 

  23. D A Callahan-Miller and M Tabak Nucl. Fusion 39 883 (1999)

    Article  ADS  Google Scholar 

  24. J F Ziegler and J P Biersack The stopping and range of ions in matter (Massachusetts: Springer) (1985)

    Book  Google Scholar 

  25. S Ichimaru Statistical plasma physics: basic principles, vol 1 (Florida: CRC Press) (2018)

    Book  Google Scholar 

  26. T A Mehlhorn J. Appl. Phys. 52 6522 (1981)

    Article  ADS  Google Scholar 

  27. R Sato, S Kawata, T Karino, K Uchibori and A I Ogoyski Sci. Rep. 9 6659 (2019)

    Article  ADS  Google Scholar 

  28. M H Emery and J H Orens Rev. Lett. 48 253 (1982)

    Article  ADS  Google Scholar 

  29. S Kawata and K Niu J. Phy. Soc. Jpn. 53 3416 (1984)

    Article  ADS  Google Scholar 

  30. R Tsuji Fusion Eng. Des. 81 2877 (2006)

    Article  Google Scholar 

  31. T Kubo, T Karino, H Kato and S Kawata IEEE Trans. Plasma Sci. 47 2 (2019)

    Article  ADS  Google Scholar 

  32. H Nakamura, T Kubo, T Karino, H Kato and S Kawata High Energy Density Phys. 35 100741 (2020)

    Article  Google Scholar 

  33. L Gholamzadeh and A Ghasemizad Plasma Sci. Technol. 13 44 (2011)

    Article  Google Scholar 

  34. S Ghaseminejad, A Ghasemizad and L Gholamzadeh Nucl. Instrum. Methods A 269 2514 (2011)

    Article  Google Scholar 

  35. M M Basko, T Schlegel and J Maruhn Phys. Plasmas 11 1577 (2004)

    Article  ADS  Google Scholar 

  36. S Kawata, K Noguchi, T Suzuki, T Karino, D Barada, A I Ogoyski and Y Y Ma Laser Part. Beams 33 591 (2015)

    Article  ADS  Google Scholar 

  37. K Miyazawa, A I Ogoyski, S Kawata, T Someya and T Kikuchi Phys. Plasmas 12 122702 (2005)

    Article  ADS  Google Scholar 

  38. A I Ogoyski, T Someya and S Kawata Comput. Phys. Commun. 157 160 (2004)

    Article  ADS  Google Scholar 

  39. A I Ogoyski, S Kawata and T Someya Comput. Phys. Commun. 161 143 (2004)

    Article  ADS  Google Scholar 

  40. A I Ogoyski, S Kawata and P H Popov Comput. Phys. Commun. 181 1332 (2010)

    Article  ADS  Google Scholar 

  41. W D Schulz (private communication: Lawrence Radiation Laboratory Livermore UCRL-6776) (1963)

  42. N A Tahir, K A Long and E W Laing J. Appl. Phys. 60 898 (1986)

    Article  ADS  Google Scholar 

  43. R Sato, S Kawata, T Karino, K Uchibori, T Iinuma, H Katoh and A I Ogoyski Comput. Phys. Commun. 240 83 (2019)

    Article  ADS  Google Scholar 

  44. S Kawata Adv. Phys. X6 1873860 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Khanbabaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghidokht, A., Khanbabaei, B. Effects of beam radius and wobbling frequency on the uniformity of target implosion in direct-drive heavy ion fusion approach. Indian J Phys 98, 327–337 (2024). https://doi.org/10.1007/s12648-023-02827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-023-02827-4

Keywords

Navigation