Skip to main content

Advertisement

Log in

Characterization of metal element distributions in the rat brain following ischemic stroke by synchrotron radiation micro-fluorescence analysis

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Ischemic stroke is one of the leading causes of death worldwide, and effective treatment strategies in the chronic phase of this disease remain insufficient. Homeostasis of metals in the brain plays an important role in maintaining normal brain function. However, the dynamic spatial distributions of iron, zinc, calcium, potassium, and copper in a rat brain following ischemic stroke and the association between structural distribution and function remain to be elucidated. In this study, we used a synchrotron radiation-based micro-X-ray fluorescence technique to image element mapping changes in special rat brain regions after ischemic stroke, showing the distribution characteristics of iron, zinc, calcium, potassium, and copper. We demonstrated, for the first time, the consistent dynamic spatial distributions of metal elements at a series of time points (3 h, 4.5 h, 6 h, 12 h, 1 d, 3 d, 5 d, 7 d, 10 d, 14 d, 28 d) after brain ischemia, which revealed that the homeostasis of iron, zinc, calcium, potassium, and copper in the brain was disturbed with distinctive change trends, providing clear insights in understanding the underlying pathogenesis of stroke from a novel perspective, thus laying the foundation of further developing new drug targets for stroke treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.F. Collingwood, F. Adams, Chemical imaging analysis of the brain with X-ray methods. Spectrochim. Acta. B 130, 101–118 (2017). https://doi.org/10.1016/j.sab.2017.02.013

    Article  Google Scholar 

  2. E.L. Que, D.W. Domaille, C.J. Chang, Metals in neurobiology: probing their chemistry and biology with molecular imaging (vol 108, pg 1517, 2008). Chem. Rev. 108(10), 4328 (2008). https://doi.org/10.1021/cr800447y

    Article  Google Scholar 

  3. H. Wang, M. Wang, B. Wang et al., Immunogold labeling and X-ray fluorescence microscopy reveal enrichment ratios of Cu and Zn, metabolism of APP and amyloid-beta plaque formation in a mouse model of Alzheimer’s disease. Metallomics 4(10), 1113–1118 (2012). https://doi.org/10.1039/c2mt20056b

    Article  Google Scholar 

  4. H. Wang, M. Wang, B. Wang et al., The distribution profile and oxidation states of biometals in APP transgenic mouse brain: dyshomeostasis with age and as a function of the development of Alzheimer’s disease. Metallomics 4(3), 289–296 (2012). https://doi.org/10.1039/c2mt00104g

    Article  Google Scholar 

  5. H.-J. Wang, M. Wang, B. Wang et al., Quantitative imaging of element spatial distribution in the brain section of a mouse model of Alzheimer’s disease using synchrotron radiation X-ray fluorescence analysis. J. Anal. Atom. Spectrom. 25(3), 328–333 (2010). https://doi.org/10.1039/b921201a

    Article  Google Scholar 

  6. P. Zatta, D. Drago, P. Zambenedetti et al., Accumulation of copper and other metal ions, and metallothionein I/II expression in the bovine brain as a function of aging. J. Chem. Neuroanat. 36(1), 1–5 (2008). https://doi.org/10.1016/j.jchemneu.2008.02.008

    Article  Google Scholar 

  7. G. Robison, T. Zakharova, S. Fu et al., X-ray fluorescence imaging of the hippocampal formation after manganese exposure. Metallomics 5(11), 1554–1565 (2013). https://doi.org/10.1039/c3mt00133d

    Article  Google Scholar 

  8. V.L. Dressler, E.I. Müller, D. Pozebon, Bioimaging Metallomics Adv. Exp. Med. Biol. 1055, 139–181 (2018). https://doi.org/10.1007/978-3-319-90143-5_7

    Article  Google Scholar 

  9. C. Bich, D. Touboul, A. Brunelle, Biomedical studies by TOF-SIMS imaging. Biointerphases 10(1), 018901 (2014). https://doi.org/10.1116/1.4901511

    Article  Google Scholar 

  10. A. Sussulini, J.S. Becker, J.S. Becker, Laser ablation ICP-MS: application in biomedical research. Mass Spectrom. Rev. 36(1), 47–57 (2017). https://doi.org/10.1002/mas.21481

    Article  Google Scholar 

  11. J. Nuñez, R. Renslow, J.B. Cliff et al., NanoSIMS for biological applications: current practices and analyses. Biointerphases 13(3), 03B301 (2017). https://doi.org/10.1116/1.4993628

    Article  Google Scholar 

  12. J. Decelle, G. Veronesi, B. Gallet et al., Subcellular chemical imaging: new avenues in cell biology. Trends Cell Biol. 30(3), 173–188 (2020). https://doi.org/10.1016/j.tcb.2019.12.007

    Article  Google Scholar 

  13. J.K. Jeon, J.K. Kim, Track analysis of a synchrotron X-ray photoelectric nanoradiator by in situ fluorescence imaging of reactive oxygen species: comparative study of gold and iron oxide nanoparticles. J. Synchrotron Radiat. 25(Pt 6), 1768–1773 (2018). https://doi.org/10.1107/S1600577518011396

    Article  Google Scholar 

  14. G. Van der Snickt, K. Janssens, J. Dik et al., Combined use of synchrotron radiation based micro-X-ray fluorescence, micro-X-ray diffraction, micro-X-ray absorption near-edge, and micro-fourier transform infrared spectroscopies for revealing an alternative degradation pathway of the pigment cadmium yellow in a painting by Van Gogh. Anal. Chem. 84(23), 10221–10228 (2012). https://doi.org/10.1021/ac3015627

    Article  Google Scholar 

  15. U.E.A. Fittschen, G. Falkenberg, Trends in environmental science using microscopic X-ray fluorescence. Spectrochim. Acta. B 66(8), 567–580 (2011). https://doi.org/10.1016/j.sab.2011.06.006

    Article  Google Scholar 

  16. R. Pérez-López, F. Macías, M.A. Caraballo et al., Mineralogy and geochemistry of Zn-rich mine-drainage precipitates from an MgO passive treatment system by synchrotron-based X-ray analysis. Environ. Sci. Technol. 45(18), 7826–7833 (2011). https://doi.org/10.1021/es201667n

    Article  Google Scholar 

  17. R.V. Krishnamurthi, V.L. Feigin, M.H. Forouzanfar et al., Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Glob. Health. 1(5), e259–e281 (2013). https://doi.org/10.1016/S2214-109X(13)70089-5

    Article  Google Scholar 

  18. F. Ma, A. Morancho, J. Montaner et al., Endothelial progenitor cells and revascularization following stroke. Brain Res. 1623, 150–159 (2015). https://doi.org/10.1016/j.brainres.2015.02.010

    Article  Google Scholar 

  19. G. Esquiva, A. Grayston, A. Rosell, Revascularization and endothelial progenitor cells in stroke. Am. J. Physiol. Cell Physiol. 315(5), C664–C674 (2018). https://doi.org/10.1152/ajpcell.00200.2018

    Article  Google Scholar 

  20. L. Finney, S. Mandava, L. Ursos et al., X-ray fluorescence microscopy reveals large-scale relocalization and extracellular translocation of cellular copper during angiogenesis. Proc. Natl. Acad. Sci. U. S. A. 104(7), 2247–2252 (2007). https://doi.org/10.1152/pnas.0607238104

    Article  Google Scholar 

  21. E.Z. Longa, P.R. Weinstein, S. Carlson et al., Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20(1), 84–91 (1989). https://doi.org/10.1161/01.str.20.1.84

    Article  Google Scholar 

  22. J. Chwiej, A. Patulska, A. Skoczen et al., Various ketogenic diets can differently support brain resistance against experimentally evoked seizures and seizure-induced elemental anomalies of hippocampal formation. J. Trace Elem. Med. Biol. 42, 50–58 (2017). https://doi.org/10.1016/j.jtemb.2017.04.002

    Article  Google Scholar 

  23. S. Takahashi, S. Hatashita, Y. Taba et al., Determination of the spatial distribution of major elements in the rat brain with X-ray fluorescence analysis. J. Neurosci. Methods 100(1–2), 53–62 (2000). https://doi.org/10.1016/s0165-0270(00)00231-4

    Article  Google Scholar 

  24. J.-L. Liu, Y.-G. Fan, Z.-S. Yang et al., Iron and Alzheimer’s disease: from pathogenesis to therapeutic implications. Front. Neurosci. 12, 632 (2018). https://doi.org/10.3389/fnins.2018.00632

    Article  Google Scholar 

  25. R. Ingrassia, A. Lanzillotta, I. Sarnico et al., 1B/(-)IRE DMT1 expression during brain ischemia contributes to cell death mediated by NF-κB/RelA acetylation at Lys310. PLoS ONE 7(5), e38019 (2012). https://doi.org/10.1371/journal.pone.0038019

    Article  Google Scholar 

  26. L. Goldstein, Z.-P. Teng, E. Zeserson et al., Hemin induces an iron-dependent, oxidative injury to human neuron-like cells. J. Neurosci. Res. 73(1), 113–121 (2003). https://doi.org/10.1002/jnr.10633

    Article  Google Scholar 

  27. Y. Liu, J. Liu, H. Liu et al., Investigation of cerebral iron deposition in aged patients with ischemic cerebrovascular disease using susceptibility-weighted imaging. Ther. Clin. Risk Manag. 12, 1239–1247 (2016). https://doi.org/10.2147/tcrm.S107783

    Article  Google Scholar 

  28. A. Saleh, M. Schroeter, A. Ringelstein et al., Iron oxide particle-enhanced MRI suggests variability of brain inflammation at early stages after ischemic stroke. Stroke 38(10), 2733–2737 (2007). https://doi.org/10.1161/strokeaha.107.481788

    Article  Google Scholar 

  29. K.E. Sandoval, K.A. Witt, Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol. Dis. 32(2), 200–219 (2008). https://doi.org/10.1016/j.nbd.2008.08.005

    Article  Google Scholar 

  30. C. Demougeot, M. Van Hoecke, N. Bertrand et al., Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2’-dipyridyl in the rat photothrombotic ischemic stroke model. J. Pharmacol. Exp. Ther. 311(3), 1080–1087 (2004). https://doi.org/10.1124/jpet.104.072744

    Article  Google Scholar 

  31. Q.Z. Tuo, P. Lei, K.A. Jackman et al., Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatr. 22(11), 1520–1530 (2017). https://doi.org/10.1038/mp.2017.171

    Article  Google Scholar 

  32. S.L. Galasso, R.H. Dyck, The role of zinc in cerebral ischemia. Mol. Med. 13(7–8), 380–387 (2007). https://doi.org/10.2119/2007-00044.Galasso

    Article  Google Scholar 

  33. R.D. Palmiter, S.D. Findley, Cloning and functional characterization of a mammalian zinc transporter that confers resistance to zinc. EMBO J. 14(4), 639–649 (1995). https://doi.org/10.1002/j.1460-2075.1995.tb07042.x

    Article  Google Scholar 

  34. C.T. Sheline, M.M. Behrens, D.W. Choi, Zinc-induced cortical neuronal death: contribution of energy failure attributable to loss of NAD(+) and inhibition of glycolysis. J. Neurosci. 20(9), 3139–3146 (2000). https://doi.org/10.1523/jneurosci.20-09-03139.2000

    Article  Google Scholar 

  35. Y. Yamasaki, N. Matsuura, H. Shozuhara et al., Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats. Stroke 26(4), 676–681 (1995). https://doi.org/10.1161/01.Str.26.4.676

    Article  Google Scholar 

  36. K. Szydlowska, M. Tymianski, Calcium, ischemia and excitotoxicity. Cell Calcium 47(2), 122–129 (2010). https://doi.org/10.1016/j.ceca.2010.01.003

    Article  Google Scholar 

  37. Z. Tang, S. Li, P. Han et al., Pertussis toxin reduces calcium influx to protect ischemic stroke in a middle cerebral artery occlusion model. J. Neurochem. 135(5), 998–1006 (2015). https://doi.org/10.1111/jnc.13359

    Article  Google Scholar 

  38. G. Yu, F. Wu, E.-S. Wang, BQ-869, a novel NMDA receptor antagonist, protects against excitotoxicity and attenuates cerebral ischemic injury in stroke. Int. J. Clin. Exp. Pathol. 8(2), 1213–1225 (2015)

    Google Scholar 

  39. O. Gotoh, T. Asano, T. Koide et al., Ischemic brain edema following occlusion of the middle cerebral artery in the rat. I: The time courses of the brain water, sodium and potassium contents and blood-brain barrier permeability to 125I-albumin. Stroke 16(1), 101–109 (1985). https://doi.org/10.1161/01.Str.16.1.101

    Article  Google Scholar 

  40. U. Ito, K. Ohno, R. Nakamura et al., Brain edema during ischemia and after restoration of blood flow. Measurement of water, sodium, potassium content and plasma protein permeability. Stroke 10(5), 542–547 (1979). https://doi.org/10.1161/01.str.10.5.542

    Article  Google Scholar 

  41. K.A. Hossmann, S. Sakaki, V. Zimmerman, Cation activities in reversible ischemia of the cat brain. Stroke 8(1), 77–81 (1977). https://doi.org/10.1161/01.str.8.1.77

    Article  Google Scholar 

  42. B.S. Jensen, BMS-204352: a potassium channel opener developed for the treatment of stroke. CNS Drug Rev. 8(4), 353–360 (2002). https://doi.org/10.1111/j.1527-3458.2002.tb00233.x

    Article  Google Scholar 

  43. J.Z. Wang, M.V. Vyas, G. Saposnik et al., Incidence and management of seizures after ischemic stroke: systematic review and meta-analysis. Neurology 89(12), 1220–1228 (2017). https://doi.org/10.1212/WNL.0000000000004407

    Article  Google Scholar 

  44. Z. Lei, H. Zhang, Y. Liang et al., Reduced expression of IA channels is associated with post-ischemic seizures. Epilepsy Res. 124, 40–48 (2016). https://doi.org/10.1016/j.eplepsyres.2016.05.008

    Article  Google Scholar 

  45. D.R. Kramer, T. Fujii, I. Ohiorhenuan et al., Interplay between cortical spreading depolarization and seizures. Stereotact. Funct. Neurosurg. 95(1), 1–5 (2017). https://doi.org/10.1159/000452841

    Article  Google Scholar 

  46. A. Zakharov, K. Chernova, G. Burkhanova et al., Segregation of seizures and spreading depolarization across cortical layers. Epilepsia 60(12), 2386–2397 (2019). https://doi.org/10.1111/epi.16390

    Article  Google Scholar 

  47. L.S. Johnson, N. Mattsson, A. Sajadieh et al., Serum potassium is positively associated with stroke and mortality in the large. Population-based malmö preventive project cohort. Stroke 48(11), 2973–2978 (2017). https://doi.org/10.1161/STROKEAHA.117.018148

    Article  Google Scholar 

  48. M. Lai, D. Wang, Z. Lin et al., Small molecule copper and its relative metabolites in serum of cerebral ischemic stroke patients. J. Stroke Cerebrovasc. Dis. 25(1), 214–219 (2016). https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.09.020

    Article  Google Scholar 

  49. M.T. Huuskonen, Q.-Z. Tuo, S. Loppi et al., The copper bis(thiosemicarbazone) complex Cu-II(atsm) is protective against cerebral ischemia through modulation of the inflammatory milieu. Neurotherapeutics 14(2), 519–532 (2017). https://doi.org/10.1007/s13311-016-0504-9

    Article  Google Scholar 

  50. X.Y. Choo, J.R. Liddell, M.T. Huuskonen et al., Cu(atsm) attenuates neuroinflammation. Front. Neurosci. 12, 668 (2018). https://doi.org/10.3389/fnins.2018.00668

    Article  Google Scholar 

  51. J.R. Prohaska, A.A. Gybina, Rat brain iron concentration is lower following perinatal copper deficiency. J. Neurochem. 93(3), 698–705 (2005). https://doi.org/10.1111/j.1471-4159.2005.03091.x

    Article  Google Scholar 

  52. X. Xu, S. Pin, M. Gathinji et al., Aceruloplasminemia: an inherited neurodegenerative disease with impairment of iron homeostasis. Ann. N. Y. Acad. Sci. 1012, 299–305 (2004). https://doi.org/10.1196/annals.1306.024

    Article  Google Scholar 

  53. M.X. Yuan, X.W. Chen, B. Song et al., Characterization of dermal fiber architecture based on X-ray phase contrast micro-tomography. Nuclear Tech. 43, 70103 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.070103

    Article  Google Scholar 

  54. J. Hu, P. Li, X. Yin et al., Nondestructive imaging of the internal microstructure of vessels and nerve fibers in rat spinal cord using phase-contrast synchrotron radiation microtomography. J. Synchrotron Radiat. 24(Pt 2), 482–489 (2017). https://doi.org/10.1107/S1600577517000121

    Article  Google Scholar 

  55. M. Zhang, G. Peng, D. Sun et al., Synchrotron radiation imaging is a powerful tool to image brain microvasculature. Med. Phys. 41, 3 (2014). https://doi.org/10.1118/1.4865784

    Article  Google Scholar 

  56. X.Y. Lan, A.G. Li, J. Wang, Bluesky-based fluorescence mapping technology. Nucl. Tech. 42, 040104 (2019). https://doi.org/10.11889/j.0253-3219.2019.hjs.42.040104. (in Chinese)

    Article  Google Scholar 

  57. C. Epaule, A. Maksimenko, G. Bastian et al., X-ray microfluorescence for biodistribution studies of nanomedicines. Int. J. Pharm. 531(1), 343–349 (2017). https://doi.org/10.1016/j.ijpharm.2017.08.106

    Article  Google Scholar 

  58. S.T. Kang, T. Wu, Z.H. Chen et al., 3D imaging of rat brain neural network using synchrotron radiation. Nucl. Tech. 43, 070101 (2020). https://doi.org/10.11889/j.0253-3219.2020.hjs.43.070101. (in Chinese)

    Article  Google Scholar 

  59. Y. Cao, Y. Zhou, S. Ni et al., Three dimensional quantification of microarchitecture and vessel regeneration by synchrotron radiation microcomputed tomography in a rat model of spinal cord injury. J. Neurotrauma 34(6), 1187–1199 (2017). https://doi.org/10.1089/neu.2016.4697

    Article  Google Scholar 

  60. M.Q. Zhang, D.N. Sun, Y.Y. Xie et al., Three-dimensional visualization of rat brain microvasculature following permanent focal ischaemia by synchrotron radiation. Br. J. Radiol. 87(1038), 20130670 (2014). https://doi.org/10.1259/bjr.20130670

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff at the BL15U station of SSRF for their kind assistance during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Qi Zhang.

Ethics declarations

Ethical approval

All animal experiments were approved by the Experimental Zoology Department of Central South University and performed following Central South University experimental welfare ethics review standards on the use of animals in research.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 81501025) and the Natural Science Foundation of Hunan Province (Nos. 2020JJ4134 and 2016JJ3174).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, SP., Wang, H., Chen, ZH. et al. Characterization of metal element distributions in the rat brain following ischemic stroke by synchrotron radiation micro-fluorescence analysis. NUCL SCI TECH 31, 96 (2020). https://doi.org/10.1007/s41365-020-00807-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-020-00807-5

Keywords

Navigation