Skip to main content

Advertisement

Log in

Measurement of the prompt neutron spectrum from thermal-neutron-induced fission in U-235 using the recoil proton method

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

A measurement of the 235U prompt fission neutron spectrum (PFNS) by the recoil proton method was performed at the Institute of Nuclear Physics and Chemistry, China. Details of the method, which include the calculation and validation of the response matrix, are presented. The PFNS for 235U in the energy range 1–12 MeV, induced by thermal neutrons, was obtained. The measured spectrum in the low-energy region was in good agreement with previous work and the ENDF/B-VII library, except for minor differences. In the high-energy region, however, the relative height of the measured spectrum was greater, and an analysis of the experiment indicated uncertainties of 13% at 10 MeV and 24% at 12 MeV. Experimental results showed that the recoil proton method could be used to measure prompt fission neutron spectra. Some directions for future work are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.C. Haight, H.Y. Lee, T.N. Taddeucci et al., The prompt fission neutron spectrum (PFNS) measurement program at LANSCE. Nucl. Data Sheets 119, 205–208 (2014). https://doi.org/10.1016/j.nds.2014.08.057

    Article  Google Scholar 

  2. R. Capote, A. Trkov, M. Sin et al., IAEA CIELO evaluation of neutron-induced reactions on 235U and 238U targets. Nucl. Data Sheets 148, 254–292 (2018). https://doi.org/10.1016/j.nds.2018.02.005

    Article  Google Scholar 

  3. M. Košťál, M. Schulc, V. Rypar et al., Validation of zirconium isotopes (n,g) and (n,2n) cross sections in a comprehensive LR-0 reactor operative parameters set. Appl. Radiat. Isot. 128, 92–100 (2017). https://doi.org/10.1016/j.apradiso.2017.06.023

    Article  Google Scholar 

  4. M. Košťál, E. Losa, P. Baroň et al., Measurement of 89Y(n,2n) spectral averaged cross section in LR-0 special core reactor spectrum. Radiat. Phys. Chem. 141, 22–28 (2017). https://doi.org/10.1016/j.radphyschem.2017.05.027

    Article  Google Scholar 

  5. M. Košťál, Z. Matěj, E. Losa et al., On similarity of various reactor spectra and 235U prompt fission neutron spectrum. Appl. Radiat. Isot. 135, 83–91 (2018). https://doi.org/10.1016/j.apradiso.2018.01.028

    Article  Google Scholar 

  6. R. Capote, Y.J. Chen, J. Hambschf et al., Prompt fission neutron spectra of actinides. Nucl. Data Sheets 131, 1–106 (2016). https://doi.org/10.1016/j.nds.2015.12.002

    Article  Google Scholar 

  7. A. Enqvist, B.M. Wieger, H. Lu, Neutron-induced 235U fission spectrum measurements using liquid organic scintillation detectors. Phys. Rev. C 86, 1–10 (2012). https://doi.org/10.1103/PhysRevC.86.064605

    Article  Google Scholar 

  8. N. Kornilov, F.J. Hambschf, I. Fabry et al., The 235U(n,f) prompt fission neutron spectrum at 100 K input neutron energy. Nucl. Sci. Eng. 165, 117–127 (2010). https://doi.org/10.1016/j.NSE.2010.11.008

    Article  Google Scholar 

  9. Y.F. Wang, X.X. Bai, A. Li et al., Experimental study of the prompt neutron spectrum of 235U fission induced by thermal neutrons. Chin. J. Phys. 11, 47–54 (1989)

    Google Scholar 

  10. A. Sardet, T. Granier, B. Laurent et al., Experimental studies of prompt fission neutron energy spectra. Phys. Procedia 47, 144–149 (2013). https://doi.org/10.1016/j.phpro.2013.06.021

    Article  Google Scholar 

  11. P. Staples, J.J. Egan, G.H.R. Kegel et al., Prompt fission neutron energy spectra induced by fast neutrons. Nucl. Phys. A 591, 41–60 (1995)

    Article  Google Scholar 

  12. J. Taieb, B. Laurent, G. Belier et al., A new fission chamber dedicated to prompt fission neutron spectra measurements. Nucl. Instrum. Methods A 833, 1–7 (2016). https://doi.org/10.1016/j.nima.2016.06.137

    Article  Google Scholar 

  13. J. Jordanova, L. Olaah, A. Fenyvesi et al., Measurements and calculations of neutron spectra modified by iron slabs bombarded by neutrons with energies up to 14 MeV. Appl. Radiat. Isot. 54, 307–310 (2001)

    Article  Google Scholar 

  14. Y. Chen, L. An, Y.F. Mou et al., Neutronics experiments of Vanadium benchmark. J. Nucl. Sci. Technol. 39, 1021–1024 (2002). https://doi.org/10.1080/00223131.2002.10875275

    Article  Google Scholar 

  15. W.P. Wen, G.W. Li, H.K. Wang, Nuclear emulsion measuring the prompt fission neutron spectrum of 238U induced by 2.8 MeV neutrons. Ann. Nucl. Energy 94, 576–580 (2016). https://doi.org/10.1016/j.anucene.2016.03.017

    Article  Google Scholar 

  16. T. Kajimoto, H. Arakawa, S. Noda et al., Study of recoil-proton-detector system using organic and inorganic scintillators for high energy neutron measurement. J. Nucl. Sci. Technol. 5, 526–529 (2008). https://doi.org/10.1080/00223131.2008.10875907

    Article  Google Scholar 

  17. M. Obu, K. Shirakata, T. Ichimori, Proton-recoil counter technique for measurement of fast neutron spectrum. J. Nucl. Sci. Technol. 16, 329–343 (1979). https://doi.org/10.1080/18811248.1979.9730909

    Article  Google Scholar 

  18. K. Weise, M. Weyrauch, K. Knauf, Neutron response of a spherical proton recoil proportional counter. Nucl. Instrum. Meth. A 309, 287–293 (1991). https://doi.org/10.1016/0168-9002(91)90114-6

    Article  Google Scholar 

  19. G. Dietze, H. Klein, NRESP4 and NEFF4: Monte Carlo codes for the calculation of neutron response functions and detection efficiencies for NE213 scintillation detectors,PTB-ND-22 (1982)

  20. R.E. Textor, V.V. Verbinski, O5S: a Monte Carlo code for calculating pulse height distributions due to monoenergetic neutrons incident on organic scintillators, ORNL-4160 (1968)

  21. G.A. Sun, C.S. Zhang, B. Chen et al., A new operating neutron scattering facility CMRR in China. Neutron News 27, 21–26 (2016). https://doi.org/10.1080/10448632.2016.1233018

    Article  Google Scholar 

  22. Y.H. Chen, J.R. Lei, X.D. Zhang et al., Study of n-gamma discrimination for 0.4–1 MeV neutrons using the zero-crossing method with a BC501A liquid scintillation detector. Chin. Phys. C 37, 462021–462024 (2013). https://doi.org/10.1088/1674-1137/37/4/046202

    Article  Google Scholar 

  23. M. Nakhostin, P.M. Walker, Application of digital zero-crossing technique for neutron–gamma discrimination liquid organic scintillation detectors. Nucl. Instrum. Methods A 621, 498–501 (2010). https://doi.org/10.1016/j.nima.2010.06.252

    Article  Google Scholar 

  24. T. He, P. Zheng, J. Xiao et al., Benchmark integral neutron experiments for Fe, Be and C with DT neutron by liquid scintillation detector. Appl. Radiat. Isot. 124, 56–61 (2017)

    Article  Google Scholar 

  25. W. Hansen, D. Richter, Determination of light output function and angle dependent correction for a stilbene crystal scintillation neutron spectrometer. Nucl. Instrum. Methods A 476, 195–199 (2002). https://doi.org/10.1016/S0168-9002(01)01430-9

    Article  Google Scholar 

  26. J. Yan, R. Liu, C. Li et al., A comparison of n-gamma discrimination by the rise-time and zero-crossing methods. Sci. China Phys. Mech. 53, 1453–1459 (2010). https://doi.org/10.1007/s11433-010-4036-8

    Article  Google Scholar 

  27. K. Dickens, Scinful: a Monte Carlo based computer program to determine a scintillator full energy response to neutron detector for energy between 0.1 and 80 MeV: user’s manual and Fortran program listing, ORNL-6462 (1988)

  28. K. Schweda, T.D. Schmidt, Improved response function calculations for scintillation detectors using an extended version of the MCNP code. Nucl. Instrum. Methods A 476, 155–159 (2002)

    Article  Google Scholar 

  29. H.C. Ma, Accelerator Single-Energy Neutron Source Data Manual in Common Use (Atomic Energy Press, Beijing, 1976)

    Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Zhu An from Sichuan University for helpful discussion and Jianming Song and Wei Luo from INPC for providing a high-performance thermal neutron source. We wish to thank Benchao Lou and Yan Li from INPC for providing the D-T neutron source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie He.

Additional information

This work was supported by the National Natural Science Foundation of China (No. 11775196) and the Chinese Special Project for ITER (No. 2015GB108006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Zheng, P. & Xiao, J. Measurement of the prompt neutron spectrum from thermal-neutron-induced fission in U-235 using the recoil proton method. NUCL SCI TECH 30, 112 (2019). https://doi.org/10.1007/s41365-019-0633-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-019-0633-z

Keywords

Navigation