Measurement of the prompt neutron spectrum from thermal-neutron-induced fission in U-235 using the recoil proton method

  • Tie HeEmail author
  • Pu Zheng
  • Jun Xiao


A measurement of the 235U prompt fission neutron spectrum (PFNS) by the recoil proton method was performed at the Institute of Nuclear Physics and Chemistry, China. Details of the method, which include the calculation and validation of the response matrix, are presented. The PFNS for 235U in the energy range 1–12 MeV, induced by thermal neutrons, was obtained. The measured spectrum in the low-energy region was in good agreement with previous work and the ENDF/B-VII library, except for minor differences. In the high-energy region, however, the relative height of the measured spectrum was greater, and an analysis of the experiment indicated uncertainties of 13% at 10 MeV and 24% at 12 MeV. Experimental results showed that the recoil proton method could be used to measure prompt fission neutron spectra. Some directions for future work are included.


Prompt fission neutron spectra Recoil proton method Response matrix U-235 



We would like to thank Prof. Zhu An from Sichuan University for helpful discussion and Jianming Song and Wei Luo from INPC for providing a high-performance thermal neutron source. We wish to thank Benchao Lou and Yan Li from INPC for providing the D-T neutron source.


  1. 1.
    R.C. Haight, H.Y. Lee, T.N. Taddeucci et al., The prompt fission neutron spectrum (PFNS) measurement program at LANSCE. Nucl. Data Sheets 119, 205–208 (2014). CrossRefGoogle Scholar
  2. 2.
    R. Capote, A. Trkov, M. Sin et al., IAEA CIELO evaluation of neutron-induced reactions on 235U and 238U targets. Nucl. Data Sheets 148, 254–292 (2018). CrossRefGoogle Scholar
  3. 3.
    M. Košťál, M. Schulc, V. Rypar et al., Validation of zirconium isotopes (n,g) and (n,2n) cross sections in a comprehensive LR-0 reactor operative parameters set. Appl. Radiat. Isot. 128, 92–100 (2017). CrossRefGoogle Scholar
  4. 4.
    M. Košťál, E. Losa, P. Baroň et al., Measurement of 89Y(n,2n) spectral averaged cross section in LR-0 special core reactor spectrum. Radiat. Phys. Chem. 141, 22–28 (2017). CrossRefGoogle Scholar
  5. 5.
    M. Košťál, Z. Matěj, E. Losa et al., On similarity of various reactor spectra and 235U prompt fission neutron spectrum. Appl. Radiat. Isot. 135, 83–91 (2018). CrossRefGoogle Scholar
  6. 6.
    R. Capote, Y.J. Chen, J. Hambschf et al., Prompt fission neutron spectra of actinides. Nucl. Data Sheets 131, 1–106 (2016). CrossRefGoogle Scholar
  7. 7.
    A. Enqvist, B.M. Wieger, H. Lu, Neutron-induced 235U fission spectrum measurements using liquid organic scintillation detectors. Phys. Rev. C 86, 1–10 (2012). CrossRefGoogle Scholar
  8. 8.
    N. Kornilov, F.J. Hambschf, I. Fabry et al., The 235U(n,f) prompt fission neutron spectrum at 100 K input neutron energy. Nucl. Sci. Eng. 165, 117–127 (2010). CrossRefGoogle Scholar
  9. 9.
    Y.F. Wang, X.X. Bai, A. Li et al., Experimental study of the prompt neutron spectrum of 235U fission induced by thermal neutrons. Chin. J. Phys. 11, 47–54 (1989)Google Scholar
  10. 10.
    A. Sardet, T. Granier, B. Laurent et al., Experimental studies of prompt fission neutron energy spectra. Phys. Procedia 47, 144–149 (2013). CrossRefGoogle Scholar
  11. 11.
    P. Staples, J.J. Egan, G.H.R. Kegel et al., Prompt fission neutron energy spectra induced by fast neutrons. Nucl. Phys. A 591, 41–60 (1995)CrossRefGoogle Scholar
  12. 12.
    J. Taieb, B. Laurent, G. Belier et al., A new fission chamber dedicated to prompt fission neutron spectra measurements. Nucl. Instrum. Methods A 833, 1–7 (2016). CrossRefGoogle Scholar
  13. 13.
    J. Jordanova, L. Olaah, A. Fenyvesi et al., Measurements and calculations of neutron spectra modified by iron slabs bombarded by neutrons with energies up to 14 MeV. Appl. Radiat. Isot. 54, 307–310 (2001)CrossRefGoogle Scholar
  14. 14.
    Y. Chen, L. An, Y.F. Mou et al., Neutronics experiments of Vanadium benchmark. J. Nucl. Sci. Technol. 39, 1021–1024 (2002). CrossRefGoogle Scholar
  15. 15.
    W.P. Wen, G.W. Li, H.K. Wang, Nuclear emulsion measuring the prompt fission neutron spectrum of 238U induced by 2.8 MeV neutrons. Ann. Nucl. Energy 94, 576–580 (2016). CrossRefGoogle Scholar
  16. 16.
    T. Kajimoto, H. Arakawa, S. Noda et al., Study of recoil-proton-detector system using organic and inorganic scintillators for high energy neutron measurement. J. Nucl. Sci. Technol. 5, 526–529 (2008). CrossRefGoogle Scholar
  17. 17.
    M. Obu, K. Shirakata, T. Ichimori, Proton-recoil counter technique for measurement of fast neutron spectrum. J. Nucl. Sci. Technol. 16, 329–343 (1979). CrossRefGoogle Scholar
  18. 18.
    K. Weise, M. Weyrauch, K. Knauf, Neutron response of a spherical proton recoil proportional counter. Nucl. Instrum. Meth. A 309, 287–293 (1991). CrossRefGoogle Scholar
  19. 19.
    G. Dietze, H. Klein, NRESP4 and NEFF4: Monte Carlo codes for the calculation of neutron response functions and detection efficiencies for NE213 scintillation detectors,PTB-ND-22 (1982)Google Scholar
  20. 20.
    R.E. Textor, V.V. Verbinski, O5S: a Monte Carlo code for calculating pulse height distributions due to monoenergetic neutrons incident on organic scintillators, ORNL-4160 (1968)Google Scholar
  21. 21.
    G.A. Sun, C.S. Zhang, B. Chen et al., A new operating neutron scattering facility CMRR in China. Neutron News 27, 21–26 (2016). CrossRefGoogle Scholar
  22. 22.
    Y.H. Chen, J.R. Lei, X.D. Zhang et al., Study of n-gamma discrimination for 0.4–1 MeV neutrons using the zero-crossing method with a BC501A liquid scintillation detector. Chin. Phys. C 37, 462021–462024 (2013). CrossRefGoogle Scholar
  23. 23.
    M. Nakhostin, P.M. Walker, Application of digital zero-crossing technique for neutron–gamma discrimination liquid organic scintillation detectors. Nucl. Instrum. Methods A 621, 498–501 (2010). CrossRefGoogle Scholar
  24. 24.
    T. He, P. Zheng, J. Xiao et al., Benchmark integral neutron experiments for Fe, Be and C with DT neutron by liquid scintillation detector. Appl. Radiat. Isot. 124, 56–61 (2017)CrossRefGoogle Scholar
  25. 25.
    W. Hansen, D. Richter, Determination of light output function and angle dependent correction for a stilbene crystal scintillation neutron spectrometer. Nucl. Instrum. Methods A 476, 195–199 (2002). CrossRefGoogle Scholar
  26. 26.
    J. Yan, R. Liu, C. Li et al., A comparison of n-gamma discrimination by the rise-time and zero-crossing methods. Sci. China Phys. Mech. 53, 1453–1459 (2010). CrossRefGoogle Scholar
  27. 27.
    K. Dickens, Scinful: a Monte Carlo based computer program to determine a scintillator full energy response to neutron detector for energy between 0.1 and 80 MeV: user’s manual and Fortran program listing, ORNL-6462 (1988)Google Scholar
  28. 28.
    K. Schweda, T.D. Schmidt, Improved response function calculations for scintillation detectors using an extended version of the MCNP code. Nucl. Instrum. Methods A 476, 155–159 (2002)CrossRefGoogle Scholar
  29. 29.
    H.C. Ma, Accelerator Single-Energy Neutron Source Data Manual in Common Use (Atomic Energy Press, Beijing, 1976)Google Scholar

Copyright information

© China Science Publishing & Media Ltd. (Science Press), Shanghai Institute of Applied Physics, the Chinese Academy of Sciences, Chinese Nuclear Society and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and TechnologySichuan UniversityChengduChina
  2. 2.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina

Personalised recommendations