Skip to main content

A facile and precise method for quantifying small–large/light-weighted molecular interaction system

Abstract

It is significant to quantify the intermolecular physisorption extent in biomedical field. By taking the advantage of a significant difference from either sizes or weights, we introduced a combination of Scatchard equation and either ultracentrifugation or size exclusion chromatography to obtain both the binding constant and the number of binding sites by using bovine serum albumin and eosin B as models. Compared to the photoluminescence quenching-based methods like Stern–Volmer and Hill equations, the introduced method is not only more precise but also simpler and more straightforward for the operation. Moreover, the protein conformational changes and the corresponding theoretical binding mode with an atomic resolution were also studied by using three-dimensional fluorescence spectroscopy and molecular docking method, respectively. These comparative results could help scientists select right methods to study any interactions between two molecules with significant differences from either sizes or weights.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    J. Guo, R.B. Zhong, W.R. Li et al., Interaction study on bovine serum albumin physically binding to silver nanoparticles: evolution from discrete conjugates to protein coronas. Appl. Surf. Sci. 359, 82 (2015). doi:10.1016/j.apsusc.2015.09.247

    Article  Google Scholar 

  2. 2.

    R.B. Zhong, M. Yuan, H.Y. Gao et al., A subtle calculation method for nanoparticle’s molar extinction coefficient: the gift from discrete protein-nanoparticle system on agarose gel electrophoresis. Funct. Mater. Lett. 9, 1650029 (2016). doi:10.1142/S1793604716500296

    Article  Google Scholar 

  3. 3.

    Y.S. Liu, R.B. Zhong, P. Zhang et al., Understanding the robust physisorption between bovine serum albumin and amphiphilic polymer coated nanoparticles. ACS Appl. Mater. Interfaces 8, 2478 (2016). doi:10.1021/acsami.5b08386

    Article  Google Scholar 

  4. 4.

    R.B. Zhong, Y.S. Liu, P. Zhang et al., Discrete nanoparticle-BSA conjugates manipulated by hydrophobic interaction. ACS Appl. Mater. Interfaces 6, 19465 (2014). doi:10.1021/Am506497s

    Article  Google Scholar 

  5. 5.

    T.G. Drummond, M.G. Hill, J.K. Barton, Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192 (2003). doi:10.1038/nbt873

    Article  Google Scholar 

  6. 6.

    P. Wang, R.B. Zhong, M. Yuan et al., Mercury (II) detection by water-soluble photoluminescent ultra-small carbon dots synthesized from cherry tomatoes. Nucl. Sci. Tech. 27, 35 (2016). doi:10.1007/s41365-016-0038-1

    Article  Google Scholar 

  7. 7.

    Z.J. Bai, Y.S. Liu, P. Zhang et al., Fluorescence resonance energy transfer between bovine serum albumin and fluoresceinamine. Luminescence 31, 688 (2016). doi:10.1002/bio.3012

    Article  Google Scholar 

  8. 8.

    M. Yuan, R.B. Zhong, X.L. Yun et al., A fluorimetric study on the interaction between a Trp-containing beta-strand peptide and amphiphilic polymer-coated gold nanoparticles. Luminescence 31, 47 (2016). doi:10.1002/bio.2920

    Article  Google Scholar 

  9. 9.

    R.B. Zhong, Y.S. Liu, P. Zhang et al., A facile method to build a proton nanosensor with neutral to basic pH sensitive range. Nucl. Sci. Tech. 25, 040503 (2014). doi:10.13538/j.1001-8042/nst.25.040503

    Google Scholar 

  10. 10.

    M. Yuan, R.B. Zhong, H.Y. Gao et al., One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing. Appl. Surf. Sci. 355, 1136 (2015). doi:10.1016/j.apsusc.2015.07.095

    Article  Google Scholar 

  11. 11.

    Y.S. Liu, P. Zhang, R.B. Zhong et al., Fluorimetric study on the interaction between fluoresceinamine and bovine serum albumin. Nucl. Sci. Tech. 26, 030505 (2015). doi:10.13538/j.1001-8042/nst.26.030505

    Google Scholar 

  12. 12.

    K. Matsumoto, B.D.B. Tiu, A. Kawamura et al., QCM sensing of bisphenol A using molecularly imprinted hydrogel/conducting polymer matrix. Polym. J. 48, 525 (2016). doi:10.1038/pj.2016.23

    Article  Google Scholar 

  13. 13.

    G.S. Huang, M.T. Wang, M.Y. Hong, A versatile QCM matrix system for online and high-throughput bio-sensing. Analyst 131, 382 (2006). doi:10.1039/b515722f

    Article  Google Scholar 

  14. 14.

    R.B. Towery, N.C. Fawcett, P. Zhang et al., Genomic DNA hybridizes with the same rate constant on the QCM biosensor as in homogeneous solution. Biosens. Bioelectron. 16, 1 (2001). doi:10.1016/S0956-5663(00)00126-3

    Article  Google Scholar 

  15. 15.

    H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010). doi:10.1038/nmat2629

    Article  Google Scholar 

  16. 16.

    J.N. Anker, W.P. Hall, O. Lyandres et al., Biosensing with plasmonic nanosensors. Nat. Mater. 7, 442 (2008). doi:10.1038/nmat2162

    Article  Google Scholar 

  17. 17.

    F. Leo, A. Magistrato, D. Bonifazi, Interfacing proteins with graphitic nanomaterials: from spontaneous attraction to tailored assemblies. Chem. Soc. Rev. 44, 6916 (2015). doi:10.1039/c5cs00190k

    Article  Google Scholar 

  18. 18.

    A.C. Newton, J. Groenewold, W.K. Kegel et al., Rotational diffusion affects the dynamical self-assembly pathways of patchy particles. Proc. Natl. Acad. Sci. USA 112, 15308 (2015). doi:10.1073/pnas.1513210112

    Article  Google Scholar 

  19. 19.

    Y.X. Ma, R.B. Zhong, J. Guo et al., A facile method for studying interaction of rhodamine B and bovine serum albumin: towards physical-binding mediated fluorescence labeling of proteins. Nucl. Sci. Tech. 26, 060502 (2015). doi:10.13538/j.1001-8042/nst.26.060502

    Google Scholar 

  20. 20.

    D. Stefanovic, M. Stefanovic, D. Lalosevic, Use of eriochrome cyanine R in routine histology and histopathology: is it time to say goodbye to hematoxylin? Biotech. Histochem. 90, 461 (2015). doi:10.3109/10520295.2015.1057765

    Article  Google Scholar 

  21. 21.

    A.A. Waheed, K.S. Rao, P.D. Gupta, Mechanism of dye binding in the protein assay using eosin dyes. Anal. Biochem. 287, 73 (2000). doi:10.1006/abio.2000.4793

    Article  Google Scholar 

  22. 22.

    A.A. Waheed, P.D. Gupta, Single-step method for estimating nanogram quantities of protein. Anal. Biochem. 275, 124 (1999). doi:10.1006/abio.1999.4301

    Article  Google Scholar 

  23. 23.

    L.L. He, X.X. Wu, Y.X. Wang et al., Spectroscopic investigation on the sonodynamic damage to protein in the presence of eosine B. Ultrason. Sonochem. 26, 93 (2015). doi:10.1016/j.ultsonch.2015.02.002

    Article  Google Scholar 

  24. 24.

    A.A. Waheed, P.D. Gupta, Estimation of submicrogram quantities of protein using the dye eosin Y. J. Biochem. Biophys. Methods 42, 125 (2000). doi:10.1016/S0165-022X(99)00055-X

    Article  Google Scholar 

  25. 25.

    J.R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn. (Springer, New York, 2006)

    Book  Google Scholar 

  26. 26.

    A. Grinvald, I.Z. Steinberg, The fluorescence decay of tryptophan residues in native and denatured proteins. Biochim. Biophys. Acta 427, 663 (1976). doi:10.1016/0005-2795(76)90210-5

    Article  Google Scholar 

  27. 27.

    H.H. Sun, J. Zhang, Y.Z. Zhang et al., Interaction of human serum albumin with 10-hydroxycamptothecin: spectroscopic and molecular modeling studies. Mol. Biol. Rep. 39, 5115 (2012). doi:10.1007/s11033-011-1307-z

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 21171086 and 81160213), the Inner Mongolia Autonomous Region science and Technology Department (No. 211-202077), the Inner Mongolia Grassland Talent (No. 108-108038), the Natural Science Foundation of Inner Mongolia Autonomous Region of China (Nos. 2013MS1121, 2015ms0806 and 2016MS0211) and the Inner Mongolia Agricultural University (Nos. 109-108040, 211-109003 and 211-206038).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, WR., Gong, P., Ma, YX. et al. A facile and precise method for quantifying small–large/light-weighted molecular interaction system. NUCL SCI TECH 27, 109 (2016). https://doi.org/10.1007/s41365-016-0123-5

Download citation

Keywords

  • Bovine serum albumin
  • Eosin B
  • Binding constant
  • Ultracentrifugation
  • Scatchard equation
  • Size exclusion chromatography